Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T19:35:56.642Z Has data issue: false hasContentIssue false

Tight frames and related geometric problems

Published online by Cambridge University Press:  18 December 2020

Grigory Ivanov*
Affiliation:
Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg3400, Austria Laboratory of Combinatorial and Geometrical Structures, Moscow Institute of Physics and Technology, Moscow141701, Russia

Abstract

A tight frame is the orthogonal projection of some orthonormal basis of $\mathbb {R}^n$ onto $\mathbb {R}^k.$ We show that a set of vectors is a tight frame if and only if the set of all cross products of these vectors is a tight frame. We reformulate a range of problems on the volume of projections (or sections) of regular polytopes in terms of tight frames and write a first-order necessary condition for local extrema of these problems. As applications, we prove new results for the problem of maximization of the volume of zonotopes.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was supported by the Swiss National Science Foundation grant 200021_179133. The author acknowledges the financial support from the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant no. 075-15-2019-1926.

References

Aubrun, G. and Szarek, S. J., Alice and Bob meet Banach: the interface of asymptotic geometric analysis and quantum information theory. Vol. 223. American Mathematical Society, Providence, RI, 2017.10.1090/surv/223CrossRefGoogle Scholar
Ball, K., Volumes of sections of cubes and related problems. In: Geometric aspects of functional analysis. Springer, Berlin, Heidelberg, 1994, pp. 251260.10.1007/BFb0090058CrossRefGoogle Scholar
Barthe, F. and Naor, A., Hyperplane projections of the unit ball of ℓp n . Discrete Comput. Geom. 27(2002), no. 2, 215226.10.1007/s00454-001-0066-3CrossRefGoogle Scholar
Chakerian, G. D. and Filliman, P., The measures of the projections of a cube. Studia Sci. Math. Hungar. 21(1986), no. 1–2, 103110.Google Scholar
Filliman, P., Extremum problems for zonotopes. Geom. Dedi. 27(1988), no. 3, 251262.Google Scholar
Filliman, P., The largest projections of regular polytopes. Isr. J. Math. 64(1988), no. 2, 207228.10.1007/BF02787224CrossRefGoogle Scholar
Filliman, P., Exterior algebra and projections of polytopes. Discrete Comput. Geom. 5(1990), no. 3, 305322.10.1007/BF02187792CrossRefGoogle Scholar
Filliman, P., The extreme projections of the regular simplex. Trans. Am. Math. Soc. 317(1990), no. 2, 611629.10.1090/S0002-9947-1990-0989573-6CrossRefGoogle Scholar
Greub, W., Multilinear algebra, Universitext. Springer-Verlag, New York-Heidelberg, 1978.10.1007/978-1-4613-9425-9CrossRefGoogle Scholar
Ivanov, G., On the volume of the John–Löwner ellipsoid. Discrete Comp. Geom. 63(2017), no. 2, 15.Google Scholar
John, F., Extremum problems with inequalities as subsidiary conditions. In: Traces and emergence of nonlinear programming. Birkhäuser, Basel, 2014, 197215.10.1007/978-3-0348-0439-4_9CrossRefGoogle Scholar
Lutwak, E., Yang, D., Zhang, G., Volume inequalities for subspaces of Lp . J. Differ. Geom. 68(2004), no. 1, 159184.10.4310/jdg/1102536713CrossRefGoogle Scholar
McMullen, P., Volumes of projections of unit cubes. Bull. Lond. Math. Soc. 16(1984), no. 3, 278280.10.1112/blms/16.3.278CrossRefGoogle Scholar
Meyer, M. and Pajor, A., Sections of the unit ball of ℓp n . J. Funct. Anal. 80(1988), no. 1, 109123.10.1016/0022-1236(88)90068-7CrossRefGoogle Scholar
Rogers, C. A. and Shephard, G. C., Some extremal problems for convex bodies. Mathematika 5(1958), no. 2, 93102.10.1112/S0025579300001418CrossRefGoogle Scholar
Schneider, R. and Weil, W., Zonoids and related topics. In: Convexity and its applications. Birkhäuser, Basel, 1983, pp. 296317.10.1007/978-3-0348-5858-8_13CrossRefGoogle Scholar
Shephard, G. C., Combinatorial properties of associated zonotopes. Canad. J. Math. 26(1974), no. 2, 302321.10.4153/CJM-1974-032-5CrossRefGoogle Scholar
Vaaler, J., A geometric inequality with applications to linear forms. Pac. J. Math. 83(1979), no. 2, 543553.10.2140/pjm.1979.83.543CrossRefGoogle Scholar
Zimmermann, G., Normalized tight frames in finite dimensions. In: Recent progress in multivariate approximation. Birkhäuser, Basel, 2001, pp. 249252.10.1007/978-3-0348-8272-9_20CrossRefGoogle Scholar
Zong, C., The cube—a window to convex and discrete geometry. Vol. 168. Cambridge University Press, 2006.10.1017/CBO9780511543173CrossRefGoogle Scholar