Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T06:44:10.468Z Has data issue: false hasContentIssue false

Successive Minima and Radii

Published online by Cambridge University Press:  20 November 2018

Martin Henk
Affiliation:
Institut für Algebra und Geometrie, Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany e-mail: [email protected]
María A. Hernández Cifre
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note we present inequalities relating the successive minima of an $o$-symmetric convex body and the successive inner and outer radii of the body. These inequalities join known inequalities involving only either the successive minima or the successive radii.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] Ball, K., Ellipsoids of maximal volume in convex bodies. Geom. Dedicata 41(1992), no. 2, 241250.Google Scholar
[2] Betke, U. and Henk, M., Estimating sizes of a convex body by successive diameters and widths. Mathematika 39(1992), no. 2, 247257.Google Scholar
[3] Bonnesen, T. and Fenchel, W., Theory of Convex Bodies. English translation. BCS Associates, Moscow, ID, 1987.Google Scholar
[4] Böröczky, K. Jr. and Henk, M., Radii and the sausage conjecture. Canad. Math. Bull. 38(1995), no. 2, 156166.Google Scholar
[5] Brandenberg, R., Radii of regular polytopes. Discrete Comput. Geom. 33(2005), no. 1, 4355.Google Scholar
[6] Gritzmann, P. and Klee, V., Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7(1992), no. 3, 255280.Google Scholar
[7] Gritzmann, P. and Klee, V., Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces. Math. Programming 59(1993), no. 2, 163213.Google Scholar
[8] Gruber, P. M., Convex and Discrete Geometry. Grundlehren derMathematischen Wissenschaften 336. Springer, Berlin, 2007.Google Scholar
[9] Gruber, P. M. and Lekkerkerker, C. G., Geometry of Numbers. North Holland, Amsterdam, 1987.Google Scholar
[10] Henk, M., Inequalities between successive minima and intrinsic volumes of a convex body. Monatsh. Math. 110(1990), no. 3-4, 279282.Google Scholar
[11] Henk, M., Successive minima and lattice points. Rend. Circ. Mat. Palermo Suppl. No. 70, part I(2002), 377384.Google Scholar
[12] Henk, M. and Hernández Cifre, M. A., Intrinsic volumes and successive radii. J. Math. Anal. Appl. 343(2008), no. 2, 733742.Google Scholar
[13] Minkowski, H., Geometrie der Zahlen. Leipzig, Berlin 1896, 1910; New York 1953.Google Scholar
[14] Perel’man, G. Ya., On the k-radii of a convex body. (Russian) Sibirsk.Mat. Zh. 28(1987), 185186. English translation: Siberian Math. J. 28(1987), 665–666.Google Scholar
[15] Puhov, S. V., Inequalities for the Kolmogorov and Bernšteĭn widths in Hilbert space. (Russian) Mat. Zametki 25(1979), 619628, 637. English translation: Math. Notes 25(1979), 320–326.Google Scholar
[16] Rogers, C. A. and Shephard, G. C., Convex bodies associated with a given convex body. J. London Math. Soc. 33(1958), 270281.Google Scholar
[17] Schneider, R., Convex bodies: The Brunn-Minkowski theory. Encyclopedia of Mathematics and Its Applications 44. Cambridge University Press, Cambridge, 1993.Google Scholar