Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T06:08:23.530Z Has data issue: false hasContentIssue false

Stratified Subcartesian Spaces

Published online by Cambridge University Press:  20 November 2018

Tsasa Lusala
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Calgary, ABe-mail: [email protected]: [email protected]
Jędrzej Śniatycki
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Calgary, ABe-mail: [email protected]: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that if the family $\mathcal{O}$ of orbits of all vector fields on a subcartesian space $P$ is locally finite and each orbit in $\mathcal{O}$ is locally closed, then $\mathcal{O}$ defines a smooth Whitney A stratification of $P$. We also show that the stratification by orbit type of the space of orbits $M/G$ of a proper action of a Lie group $G$ on a smooth manifold $M$ is given by orbits of the family of all vector fields on $M/G$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Aronszajn, N., Subcartesian and subriemannian spaces. Notices Amer. Math. Soc. 14(1967), 111.Google Scholar
[2] Bierstone, E., Lifting isotopies from orbit spaces. Topology 14(1975), no. 3, 245252. doi:10.1016/0040-9383(75)90005-1Google Scholar
[3] Bierstone, E., The structure of orbit spaces and the singularities of equivariant mappings. Monografías de Matemática, 35, Instituto de Matemática Pura e Applicada, Rio de Janeiro, 1980.Google Scholar
[4] Cushman, R. and Śniatycki, J., Differential structure of orbit spaces. Canad. J. Math. 53(2001), no. 4, 715755. doi:10.4153/CJM-2001-029-1Google Scholar
[5] Duistermaat, J. J., Dynamical systems with symmetries. http://www.math.uu.nl/people/duis/homepageHD/sym.pdf Google Scholar
[6] Duistermaat, J. J. and Kolk, J. A. C., Lie groups. Springer-Verlag, Berlin, 2000.Google Scholar
[7] Goresky, M. and MacPherson, R., Stratified Morse theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 14, Springer Verlag, Berlin, 1988.Google Scholar
[8] Mather, J. N., Stratifications and mappings. In: Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, pp. 195232.Google Scholar
[9] Sikorski, R., Wstęp do geometrii Różniczkowej. Biblioteka Matematyczna, 42, Państwowe Wydawnictwo Naukowe, Warsaw, 1972.Google Scholar
[10] Śniatycki, J., Orbits of families of vector fields on subcartesian spaces. Ann. Inst. Fourier (Grenoble) 53(2003), no. 7, 22572296.Google Scholar
[11] Whitney, H., Local properties of analytic varieties. In: Differentiable and combinatorial topology, Princeton University Press, Princeton, NJ, 1965.Google Scholar