Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:03:17.437Z Has data issue: false hasContentIssue false

Some Triangle Inequalities and Generalizations

Published online by Cambridge University Press:  20 November 2018

C. E. Carroll
Affiliation:
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19174
C C. Yang
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
S. Ahn
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let , where ai, s, and x are real, and II denotes the product over cyclic rearrangements of the subscripts. We show that, in five special cases, Dn, s(x)Dn, s(y) is greater than a fixed multiple of Dn, s(x + y).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

References

1. Beckenbach, E.F. and Bellman, R., Inequalities, Springer-Verlag, New York, 1965.Google Scholar
2. Breusch, R., American Mathematical Monthly 80, 809, (1973).Google Scholar
3. Lars, Gårding, Journal of Mathematics and Mechanics 8, 957, (1959).Google Scholar
4. Hardy, G.H., Littlewood, J.E. and Pólya, G., Inequalities, Cambridge University Press, 1952.Google Scholar
5. Hobson, E.W., A Treatise on Plane and Advanced Trigonometry, Dover Publications, New York, 1928.Google Scholar
6. Jensen, J. L. W. V., Acta Mathematica 30, 175, (1905).Google Scholar
7. Mitrinovic, D.S., Analytic Inequalities, Springer-Verlag, New York, 1970.Google Scholar
8. Pringsheim, A., Sitzungsberichte der mathematisch-physikalischen Classe der k?niglichen, Bayerischen Akademie der Wissenschaften zu Miinchen 32, 295, (1903).Google Scholar