Article contents
Some Remarks on the Mathieu Groups
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In the present note we shall study some properties of the Mathieu groups.
We shall give an invariant characterisation of the 2-Sylow subgroups. The 2-Sylow subgroup of M24 is the holomorph of the elementary abelian group of type (1, 1, 1, 1), and for the 2-Sylow subgroups of the other Mathieu groups there are similar characterisations.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1964
References
1.
Carmichael, R.D., Introduction to the theory of groups of finite
order, Boston
(1937).Google Scholar
2.
Coxeter, H.S.M., Twelve points in PG(5,3) with 95040
self-transformations, Proc. Royal Society
(A), 247 (1958),
279–293.Google Scholar
3.
Coxeter, H.S.M. and Moser, W. O. J., Generators and relations for discrete
groups, Berlin
(1957).Google Scholar
4.
Frobenius, G., Über die Charaktere der mehrfach transitiven
Gruppen, Sitzungsber. preuss. Akad.
Wiss. (1904),
558–571.Google Scholar
5.
Mathieu, É., Mémoire sur l'étude des fonctions de plusieurs
quantités, J. Math. pur. appl. II, sér.
6 (1861),
241–323.Google Scholar
6.
Mathieu, É., Sur la fonction cinq fois transitive de 24
quantités, J. Math. pur. appl. II, s?r.
18 (1873),
25–46.Google Scholar
7.
Moser, W.O.J., Abstract definitions of the Mathieu groups
M11 and M12
, Canad. Math. Bull.
2(1959),
9–13.Google Scholar
8.
Todd, J. A., On the representations of the Mathieu groups as
collineation groups, J. London Math.
Soc.
34 (1959),
406–416.Google Scholar
9.
Witt, E., Die 5-fach transitiven Gruppen von
Mathieu, Abh. math. Sem. Univ. Hamburg
12 (1938),
256–264.Google Scholar