No CrossRef data available.
Article contents
Some Properties of Triebel–Lizorkin and Besov Spaces Associated with Zygmund Dilations
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, using Calderón’s reproducing formula and almost orthogonality estimates, we prove the lifting property and the embedding theorem of the Triebel–Lizorkin and Besov spaces associated with Zygmund dilations.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2016
References
[1]
Frazier, M. and Jawerth, B., A discrete transform and decomposition of distribution spaces.
J. Funct. Anal.
93(1990), no. 1, 34–170. http://dx.doi.Org/10.1016/0022-1236(90)90137-A
Google Scholar
[2]
Fefferman, R. and Pipher, J., Multiparameter operators and sharp weighted inequalities.
Amer. J. Math.
11(1997), no. 2, 337–369. http://dx.doi.Org/10.1353/ajm.1997.0011
Google Scholar
[3]
Gatto, A. E., Product rule and chain rule estimates for fractional derivatives in spaces that satisfy the doubling condition.
J. Funct. Anal.
188(2002), no. 1, 27–37. http://dx.doi.Org/10.1OO6/jfan.2OO1.3836
Google Scholar
[4]
Gatto, A. E., Segovia, C., and Vagi, S., On fractional differentiation and integration on spaces of homogeneous type.
Rev. Mat. Iberoamericana
12(1996), no. 1,111-145. http://dx.doi.Org/10.4171/RMI/196
Google Scholar
[5]
Gatto, A. E. and Vagi, S., On Sobolev spaces of fractional order and e-families of operators on spaces of homogeneous type.
Studia Math.
133(1999), no. 1,19-27.Google Scholar
[6]
Han, Y., The embedding theorem for the Besov and Triebel-Lizorkin spaces on spaces of homogeneous type.
Proc. Amer. Math. Soc.
123(1995), no. 7, 2181–2189. http://dx.doi.Org/10.1090/S0002-9939-1995-1249880-9
Google Scholar
[7]
Han, Y. and Lu, G., Endpoint estimates for singular integral operators and Hardy spaces associated with Zygmund dilations. Trends in Partial Differential Equations, ALM 10, igh Education Press and International Press, Beijing-Boston, 2009, pp. 99–191.Google Scholar
[8]
Liao, F. and Liu, Z., Multi-parameter Triebel-Lizorkin and Besov spaces assaciated with Zygmund dilation.
Taiwanese J. Math.
6(2013), no. 6, 2019–2037. http://dx.doi.Org/10.1165O/tjm.17.2013.3243
Google Scholar
[9]
Ricci, F. and Stein, E. M., Multiparameter singular integrals and maximal functions.
Ann. Inst. Fourier(Grenoble)
42(1992), no. 3, 637–670. http://dx.doi.Org/10.58O2/aif.1304
Google Scholar
[10]
Triebel, H., Theory of function spaces. Monographs in Mathematics, 78, Birkhauser-Verlag, Basel, 1983. http://dx.doi.Org/10.1007/978-3-0346-0416-1
Google Scholar
[11]
Yang, D., Riesz potentials in Besov and Triebel-Lizorkin spaces over spaces of homogeneous type.
Potential Anal.
19(2003), no. 2, 193–210. http://dx.doi.Org/10.1023/A:1023217617339
Google Scholar
[12]
Yang, D., Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type.
Sci. China Ser. A
46(2003), no. 2, 187–199. http://dx.doi.Org/10.1360/03ys9020
Google Scholar
[13]
Yang, D., Besov and Triebel-Lizorkin spaces related to singular integrals with flag kernel.
Rev. Mat. Complut.
22(2009), no. 1, 253–302. http://dx.doi.Org/10.5209/revj:EMA.2009.v22.n1.16358
Google Scholar
You have
Access