Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T11:57:18.147Z Has data issue: false hasContentIssue false

Some Combinatorial Theorems on Monotonicity

Published online by Cambridge University Press:  20 November 2018

V. Chvátal
Affiliation:
University of Waterloo, Waterloo, Ontario
J. Komlόs
Affiliation:
McGill University, Montreal, Quebec; Hungarian Academy of Sciences, Budapest, Hungary
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

P. Erdös and G. Szekeres [1] proved that from any points in the plane one can always choose n + 1 of them which are the vertices of a convex polygon, thus answering a question due to Miss Esther Klein (who later became Mrs. G. Szekeres).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1971

References

1. Erdös, P. and Szekeres, G., A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.Google Scholar
2. Gallai, T., On directed paths and circuits. Theory of graphs (edited by P. Erdös and G. Katona), Academic Press, 1968.Google Scholar
3. Hedrlin, Z. and Pultr, A., Relations (graphs) with given finitely generated semigroups, Mh. Math. 68 (1964), 213-217.Google Scholar