Published online by Cambridge University Press: 20 November 2018
It is shown that dentability of the unit ball of a conjugate Banach space X* does not imply smoothability of the unit ball of X, answering a question raised by Kemp. A property called strong smoothability is introduced and is shown to be dual to dentability. The results are used to provide new proofs of the facts that X is an Asplund space whenever it has an equivalent Fréchet differentiable norm, or whenever X* has the Radon-Nikodym Property.