Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T05:06:04.028Z Has data issue: false hasContentIssue false

Simplicite des Groupes Unitaires Definis par un Facteur Simple

Published online by Cambridge University Press:  20 November 2018

Thierry Giordano
Affiliation:
Institut de Mathématiques UniversitéDe Neuchâtel , CH-2000 Neuchâtel
Pierre De La Harpe
Affiliation:
Institut de Mathématiques UniversitéDe Neuchâtel , CH-2000 Neuchâtel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let B be a σ-finite von Neumann factor of type II1 or III and let σ be an involutory *-antiautomorphism of B. We consider U(B) the unitary group of B and its subgroup G = {g ∈U(B) | σ(g) = g*}, which are unitary classical groups. In this paper, we prove that G has a unique non trivial normal subgroup, which is its centre {±1}.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1984

References

1. Bonsall, F. F. et Duncan, J., Complete normed algebras, Springer-Verlag, New York-Berlin- Heidelberg 1973.Google Scholar
2. Douglas, R. G., Banach algebra techniques in operator theory, Academic Press, New York 1972.Google Scholar
3. Dye, H. A., On the geometry of projections in certain operator algebras, Ann. of Math. 61 (1955) 73-89.Google Scholar
4. Giordano, T., Antiautomorphismes involutifs des facteurs de von Neumann injectifs, thèse, Neuchâtel, 1981; voir aussi C. R. Acad. Sci. Paris, Sér. A, 291 (1980) 583-585.Google Scholar
5. de la Harpe, P., Simplicity of the projective unitary groups defined by simple factors, Comment. Math. Helv. 54 (1979) 334-345.Google Scholar
6. de la Harpe, P., Classical groups and classical Lie algebras of operators, Operator Algebras and Applications. Proc. in Pure Math., Amer. Math. Soc. Vol. 38, part. I, pages 477-513.Google Scholar
7. Størmer, E., On anti-automorphisms of von Neumann algebras, Pacific J. Math. 21 (1967) 349-370.Google Scholar
8. Stratila, S. et Zsido, L., Lectures on von Neumann algebras, Abacus Press, Kent 1979.Google Scholar
9. Topping, D. M., Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53, A.M.S. Providence R. I. 1965.Google Scholar
10. Upmeier, H., Automorphism groups of Jordan C*-algebras, Math. Z. 176 (1981) 21-34.Google Scholar