No CrossRef data available.
Article contents
Simplicite des Groupes Unitaires Definis par un Facteur Simple
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let B be a σ-finite von Neumann factor of type II1 or III and let σ be an involutory *-antiautomorphism of B. We consider U(B) the unitary group of B and its subgroup G = {g ∈U(B) | σ(g) = g*}, which are unitary classical groups. In this paper, we prove that G has a unique non trivial normal subgroup, which is its centre {±1}.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1984
References
1.
Bonsall, F. F. et Duncan, J., Complete normed algebras, Springer-Verlag, New York-Berlin- Heidelberg
1973.Google Scholar
2.
Douglas, R. G., Banach algebra techniques in operator theory, Academic Press, New York
1972.Google Scholar
3.
Dye, H. A., On the geometry of projections in certain operator algebras, Ann. of Math. 61 (1955) 73-89.Google Scholar
4.
Giordano, T., Antiautomorphismes involutifs des facteurs de von Neumann injectifs, thèse, Neuchâtel, 1981; voir aussi C. R. Acad. Sci. Paris, Sér. A, 291 (1980) 583-585.Google Scholar
5.
de la Harpe, P., Simplicity of the projective unitary groups defined by simple factors, Comment. Math. Helv. 54 (1979) 334-345.Google Scholar
6.
de la Harpe, P., Classical groups and classical Lie algebras of operators, Operator Algebras and Applications. Proc. in Pure Math., Amer. Math. Soc. Vol. 38, part. I, pages 477-513.Google Scholar
7.
Størmer, E., On anti-automorphisms of von Neumann algebras, Pacific J. Math. 21 (1967) 349-370.Google Scholar
8.
Stratila, S. et Zsido, L., Lectures on von Neumann algebras, Abacus Press, Kent
1979.Google Scholar
9.
Topping, D. M., Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53, A.M.S. Providence R. I. 1965.Google Scholar
10.
Upmeier, H., Automorphism groups of Jordan C*-algebras, Math. Z. 176 (1981) 21-34.Google Scholar
You have
Access