Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T08:04:45.078Z Has data issue: false hasContentIssue false

Sharp Bounds for Oscillatory Integral Operators with Homogeneous Polynomial Phases

Published online by Cambridge University Press:  20 December 2019

Danqing He
Affiliation:
School of Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai200433, People’s Republic of China Email: [email protected]
Zuoshunhua Shi
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha, People’s Republic of China Email: [email protected]

Abstract

We obtain sharp $L^{p}$ bounds for oscillatory integral operators with generic homogeneous polynomial phases in several variables. The phases considered in this paper satisfy the rank one condition that is an important notion introduced by Greenleaf, Pramanik, and Tang. Under certain additional assumptions, we can establish sharp damping estimates with critical exponents to prove endpoint $L^{p}$ estimates.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Danqing He was supported by NNSF of China (No. 11701583). Zuoshunhua Shi was supported in part by NNSF of China under Grant No. 11701573.

References

Carbery, A., Christ, M., and Wright, J., Multidimensional van der Corput and sublevel estimates. J. Amer. Math. Soc. 12(1999), 9811015. https://doi.org/10.1090/S0894-0347-99-00309-4CrossRefGoogle Scholar
Carbery, A. and Wright, J., What is van der Corput’s lemma in higher dimensions? In: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000). Publ. Mat. EXTRA (2002), pp. 13–26. https://doi.org/10.5565/PUBLMAT_Esco02_01.CrossRefGoogle Scholar
Christ, M., Li, X.C., Tao, T., and Thiele, C., On multilinear oscillatory integrals, nonsingular and singular. Duke Math. J. 130(2005), 321351. https://doi.org/10.1215/00127094-8229909CrossRefGoogle Scholar
Gilula, M., Some oscillatory integral estimates via real analysis. Math. Z. 289(2018), 377403. https://doi.org/10.1007/s00209-017-1956-2CrossRefGoogle Scholar
Gilula, M., Gressman, P. T., and Xiao, L., Higher decay inequalities for multilinear oscillatory integrals. Math. Res. Lett. 25(2018), 819842. https://doi.org/10.4310/MRL.2018.v25.n3.a5CrossRefGoogle Scholar
Greenblatt, M., A direct resolution of singularities for functions of two variables with applications to analysis. J. Anal. Math. 92(2004), 233257. https://doi.org/10.1007/BF02787763CrossRefGoogle Scholar
Greenblatt, M., Sharp L 2 estimates for one-dimensional oscillatory integral operators with C phase. Amer. J. Math. 127(2005), 659695.CrossRefGoogle Scholar
Greenleaf, A., Pramanik, M., and Tang, W., Oscillatory integral operators with homogeneous polynomial phases in several variables. J. Funct. Anal. 244(2007), 444487. https://doi.org/10.1016/j.jfa.2006.11.005CrossRefGoogle Scholar
Greenleaf, A. and Seeger, A., Oscillatory and Fourier integral operators with folding canonical relations. Studia Math. 132(1999), 125139.Google Scholar
Greenleaf, A. and Seeger, A., Oscillatory and Fourier integral operators with degenerate canonical relations. Publ. Mat. (2002), 93141. https://doi.org/10.5565/PUBLMAT_Esco02_05CrossRefGoogle Scholar
Gressman, P. T. and Xiao, L., Maximal decay inequalities for trilinear oscillatory integrals of convolution type. J. Funct. Anal. 271(2016), 36953726. https://doi.org/10.1016/j.jfa.2016.09.003CrossRefGoogle Scholar
Hörmander, L., Oscillatory integrals and multipliers on FL p. Ark. Mat. 11(1973), 111. https://doi.org/10.1007/BF02388505CrossRefGoogle Scholar
Pan, Y., Sampson, G., and Szeptycki, P., L 2 and L p estimates for oscillatory integrals and their extended domains. Studia Math. 122(1997), 201224.Google Scholar
Phong, D. H. and Stein, E. M., Oscillatory integrals with polynomial phases. Invent. Math. 110(1992), 3962. https://doi.org/10.1007/BF01231323CrossRefGoogle Scholar
Phong, D. H. and Stein, E. M., Models of degenerate Fourier integral operators and Radon transforms. Ann. of Math. 140(1994), 703722. https://doi.org/10.2307/2118622CrossRefGoogle Scholar
Phong, D. H. and Stein, E. M., The Newton polyhedron and oscillatory integral operators. Acta Math. 179(1997), 105152. https://doi.org/10.1007/BF02392721CrossRefGoogle Scholar
Phong, D. H. and Stein, E. M., Damped oscillatory integral operators with analytic phases. Adv. in Math. 134(1998), 146177. https://doi.org/10.1006/aima.1997.1704CrossRefGoogle Scholar
Phong, D. H., Stein, E. M., and Sturm, J. A., Multilinear level set operators, oscillatory integral operators, and Newton polyhedra. Math. Ann. 319(2001), 573596. https://doi.org/10.1007/PL00004450CrossRefGoogle Scholar
Rychkov, V. S., Sharp L 2 bounds for oscillatory integral operators with C phases. Math. Z. 236(2001), 461489. https://doi.org/10.1007/PL00004838CrossRefGoogle Scholar
Seeger, A., Radon transforms and finite type conditions. J. Amer. Math. Soc. 11(1998), 869897. https://doi.org/10.1090/S0894-0347-98-00280-XCrossRefGoogle Scholar
Shi, Z. S. H., Uniform estimates for oscillatory integral operators with polynomial phases. 2018. arxiv:1809.01300.Google Scholar
Shi, Z. S. H., Xu, S. Z., and Yan, D. Y., Damping estimates for oscillatory integral operators with real-analytic phases and its applications. Forum Math. 31(2019), 843865. https://doi.org/10.1515/forum-2019-0011CrossRefGoogle Scholar
Shi, Z. S. H. and Yan, D. Y., Sharp L p-boundedness of oscillatory integral operators with polynomial phases. Math. Z. 286(2017), 12771302. https://doi.org/10.1007/s00209-016-1800-0CrossRefGoogle Scholar
Stein, E. M., Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III. Princeton University Press, 1993.Google Scholar
Tang, W., Decay rates of oscillatory integral operators in 1 + 2 dimensions. Forum Math. 18(2006), 427444. https://doi.org/10.1515/FORUM.2006.024CrossRefGoogle Scholar
Varchenko, A., Newton polyhedra and estimations of oscillatory integrals. Funct. Anal. Appl. 18(1976), 175196.Google Scholar
Xiao, L., Endpoint estimates for one-dimensional oscillatory integral operators. Adv. Math. 316(2017), 255291. https://doi.org/10.1016/j.aim.2017.06.007CrossRefGoogle Scholar
Xu, S. Z. and Yan, D. Y., Sharp L p decay of oscillatory integral operators with certain homogeneous polynomial phases in several variables. Sci. China Math. 62(2019), 649662. https://doi.org/10.1007/s11425-017-9193-1CrossRefGoogle Scholar
Yang, C. W., Sharp estimates for some oscillatory integral operators on ℝ1. Illinois J. Math. 48(2004), 10931103.CrossRefGoogle Scholar
Yang, C. W., L p improving estimates for some classes of Radon transforms. Trans. Amer. Math. Soc. 357(2005), 38873903. https://doi.org/10.1090/S0002-9947-05-03807-9CrossRefGoogle Scholar