Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T22:43:40.288Z Has data issue: false hasContentIssue false

A Semiregularity Map Annihilating Obstructions to Deforming Holomorphic Maps

Published online by Cambridge University Press:  20 November 2018

Donatella Iacono*
Affiliation:
Dipartimento di Matematica “G. Castelnuovo”, Sapienza Università di Roma, Italy e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study infinitesimal deformations of holomorphic maps of compact, complex, Kähler manifolds. In particular, we describe a generalization of Bloch's semiregularity map that annihilates obstructions to deform holomorphic maps with fixed codomain.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Artin, M., Lectures on deformations of singularities. Tata Institute of Fundamental Research, Bombay, 1976.Google Scholar
[2] Behrend, K. and Fantechi, B., The intrinsic normal cone. Invent. Math. 128(1997), no. 1, 4588. doi:10.1007/s002220050136Google Scholar
[3] Bloch, S., Semi-regularity and deRham cohomology. Invent. Math. 17(1972), 5166. doi:10.1007/BF01390023Google Scholar
[4] Buchweitz, R.-O. and Flenner, H., A semiregularity map for modules and applications to deformations. Compos. Math. 137(2003), no. 2, 135210. doi:10.1023/A:1023999012081Google Scholar
[5] Buchweitz, R.-O. and Milson, J. J., CR-geometry and deformations of isolated singularities. Mem. Amer. Math. Soc. 125(1997), no. 597.Google Scholar
[6] Clemens, H., Geometry of formal Kuranishi theory. Adv. Math. 198(2005), no. 1, 311365. doi:10.1016/j.aim.2005.04.015Google Scholar
[7] Deligne, P., Griffiths, P., Morgan, J., and Sullivan, D., Real homotopy theory of Kähler manifolds. Invent. Math. 29(1975), no. 3, 245274. doi:10.1007/BF01389853Google Scholar
[8] Fantechi, B. and Manetti, M., Obstruction calculus for functors of Artin rings. I. J. Algebra, 202(1998), no. 2, 541576. doi:10.1006/jabr.1997.7239Google Scholar
[9] Fantechi, B. and Manetti, M., On the T 1 -lifting theorem. J. Algebraic Geom. 8(1999), no. 1, 3139.Google Scholar
[10] Fiorenza, D., Manetti, M., L algebras, Cartan homotopies and period maps. arXiv:math.AG/0605297v1.Google Scholar
[11] Horikawa, E., On deformations of holomorphic maps I & II. J. Math. Soc. Japan 25(1973), 372396; 26(1974), 647–667. doi:10.2969/jmsj/02530372Google Scholar
[12] Iacono, D., Differential Graded Lie Algebras and Deformations of Holomorphic Maps, Ph. D. Thesis, Roma, 2006, arXiv:math.AG/0701091Google Scholar
[13] Iacono, D., L -algebras and deformations of holomorphic maps. Int. Math. Res. Not. 8(2008), Art. ID rnn013, 36 pp.Google Scholar
[14] Kawamata, Y., Unobstructed deformations. II. J. Algebraic Geom. 4(1995), no. 2, 277279.Google Scholar
[15] Kontsevich, M., Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(2003), no. 3, 157216. doi:10.1023/B:MATH.0000027508.00421.bfGoogle Scholar
[16] Manetti, M., Cohomological constraint to deformations of compact Kähler manifolds. Adv. Math. 186(2004), no. 1, 125142. doi:10.1016/j.aim.2003.07.010Google Scholar
[17] Manetti, M., Lectures on deformations of complex manifolds. Rend. Mat. Appl. (7) 24(2004), no. 1, 1183.Google Scholar
[18] Manetti, M., Lie description of higher obstructions to deforming submanifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. 6(2007), no. 4, 631659.Google Scholar
[19] Ran, Z., Semiregularity, obstructions and deformations of Hodge classes. Ann. Scuola Norm. Pisa Cl. Sci. 28(1999), no. 4, 809820.Google Scholar
[20] Ran, Z., Universal variations of Hodge structure and Calabi-Yau-Schottky relations. Invent. Math. 138(1999), 425449. doi:10.1007/s002220050382Google Scholar