No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
The self-adjoint extensions of the singular differential operator Ly = [(py’)’ + qy]/w, where p < 0, w > 0, q ≧ mw, are characterized under limit-circle conditions. It is shown that as long as the coefficients of certain boundary conditions define points which lie between two lines, the extension they help define has the same lower bound.