No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let M be a differentiable manifold of class C∞, with a given (1, 1) tensor field J of constant rank such that J2=λI (for some real constant λ). J defines a class of conjugate (G-structures on M. For λ>0, one particular representative structure is an almost product structure. Almost complex structure arises when λ<0. If the rank of J is maximum and λ=0, then we obtain an almost tangent structure. In the last two cases the dimension of the manifold is necessarily even. A Riemannian metric S on M is said to be related if one of the conjugate structures defined by S has a common subordinate structure with the G-structure defined by S. It is said to be J-metric if the orthogonal structure defined by S has a common subordinate structure.