Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T00:54:52.990Z Has data issue: false hasContentIssue false

Second-Order Evolution Equations Associated with Convex Hamiltonians(1)

Published online by Cambridge University Press:  20 November 2018

J. P. Aubin
Affiliation:
Centre de Recherches Mathematiques de la Decision Université Paris. Dauphine 75775 Paris Cedex 16, France
I. Ekeland
Affiliation:
Centre de Recherches Mathematiques de la Decision Université Paris. Dauphine 75775 Paris Cedex 16, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many problems in mathematical physics can be formulated as differential equations of second order in time:

with V a convex functional. This is the Euler equation for the Lagrangian

which is convex with respect to x, and concave with respect to x.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

Footnotes

(2)

J. P. Aubin, CEREMADE, University of Paris-Dauphine, 75775 Paris 16.

(3)

I. Ekeland, Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1W5 Canada; and CEREMADE, University of Paris-Dauphine.

(1)

Research supported by NRC Grants #67-9082 and 67-3990.

References

1. Aubin, J. P., Mathematical methods of game and economic theory, North-Holland Elsevier (1978).Google Scholar
2. Brezis, H., Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland.Google Scholar
3. Brezis, H. and Ekeland, I., Un principe variationnel associé à certaines équations paraboliques, Notes CRAS Paris t.282 (1976), pp. 971-974 and 1197-1198.Google Scholar
4. Brezis, M., Nirenberg, H., and Stampacchia, G., A remark on Ky Fan's minimax principle, Bol. Un. Mat. Ital. IV Ser. 6, 1972, pp. 293-300.Google Scholar
5. Ekeland, I. and Temam, R., Convex analysis and variational problems, North-Holland.Google Scholar
6. Fan, Ky, A minimax inequality and applications, Inequalities III, Shishia ?d., Academic Press (1972), pp. 103-113.Google Scholar
7. Schatzmann, M., Le système differentiel avec conditions initiales, Note CRAS Paris, t.284 (1976), pp. 603-606.Google Scholar