Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T03:05:19.404Z Has data issue: false hasContentIssue false

S-Barrelled Topological Vector Spaces*

Published online by Cambridge University Press:  20 November 2018

Ray F. Snipes*
Affiliation:
Department of Mathematics, Bowling Green State University, Bowling GreenOhio 43403
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

N. Bourbaki [1] was the first to introduce the class of locally convex topological vector spaces called “espaces tonnelés” or “barrelled spaces.” These spaces have some of the important properties of Banach spaces and Fréchet spaces. Indeed, a generalized Banach-Steinhaus theorem is valid for them, although barrelled spaces are not necessarily metrizable. Extensive accounts of the properties of barrelled locally convex topological vector spaces are found in [5] and [8].

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1978

Footnotes

*

Some of these results are contained in the author's Ph.D. thesis written at the University of Virginia under the direction of Professor E. J. McShane.

References

1. Bourbaki, N., Sur Certains Espaces Vectoriels Topologiques. Ann. Inst. Fourier 2 (1950), pp. 5-16.Google Scholar
2. Dieudonn, J.é, and Schwartz, L., La Dualité dans les Espaces et (). Ann. Inst. Fourier 1 (1949), pp. 61-101.Google Scholar
3. Dudley, R. M., On Sequential Convergence. Trans. Amer. Math. Soc. 112 (1964), pp. 483-507.Google Scholar
4. Garsoux, J., Espaces Vectoriels Topologiques et Distributions. Dunod, Paris, 1963.Google Scholar
5. Horváth, J., Topological Vector Spaces and Distributions. Addison-Wesley, Reading (Mass.), 1966.Google Scholar
6. Husain, T., and Khaleelulla, S. M., On Countably, σ-, and Sequentially Barrelled Spaces. Canad. Math. Bull. 18 (1975), pp. 431-432.Google Scholar
7. Husain, T., and Yau-Chuen Wong, On Various Types of Barrelledness and the Hereditary Property of (DF)-Spaces. Glasgow Math. J. 17 (1976), pp. 134-143.Google Scholar
8. K, G.öthe, Topological Vector Spaces I. Springer-Verlag, New York, 1969.Google Scholar
9. Lohman, R. H., Convergence of Sequences in Fréchet Spaces. Boll. Un. Mat. Ital. (4) 4 (1971), pp. 345-350.Google Scholar
10. Schaefer, H. H., Topological Vector Spaces. Macmillan, New York, 1966.Google Scholar
11. Shirai, T., Sur les Topologies des Espaces de L. Schwartz. Proc. Jap. Acad. 35 (1959), pp. 31-36.Google Scholar
12. Snipes, R. F., C-Sequential and S-Bomological Topological Vector Spaces. Math. Ann. 202 (1973), pp. 273-283.Google Scholar
13. Webb, J. H., Sequential Convergence in Locally Convex Spaces. Proc. Camb. Phil. Soc. 64 (1968), pp. 341-364.Google Scholar
14. Wilansky, A., Functional Analysis. Blaisdell, New York, 1964.Google Scholar
15. Wilansky, A., Topics in Functional Analysis. Springer-Verlag, New York, 1967.Google Scholar