Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T08:12:30.003Z Has data issue: false hasContentIssue false

Sandwich Theorems for Semicontinuous Operators

Published online by Cambridge University Press:  20 November 2018

J. M. Borwein
Affiliation:
Department of Mathematics, Statistics and Computing Science Dalhousie University Halifax, Nova Scotia B3H 3J5
M. Théra
Affiliation:
Département de Mathématiques Université de Limoges Limoges 87060, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide vector analogues of the classical interpolation theorems for lower semicontinuous functions due to Dowker and to Hahn and Katetov-Tong.

Résumé

Résumé

Le but de cet article est de montrer que sous certaines conditions, les théorèmes d'interposition de Dowker, Hahn et Katetov-Tong ont des analogues pour des applications à valeurs vectorielles et semi-continues inférieurement.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

[B-G-K-K-T] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K., Nonlinear parametric optimization. Akademie Verlag, Berlin, 1982.Google Scholar
[Be] Beer, G., Lattice semicontinuous functions and their applications, Houston J. Math. 13(1987), 303318.Google Scholar
[Ber] Berge, C., Espaces topologiques. (2nd éd.), Paris, 1966.Google Scholar
[Bo] Borwein, J. M., Continuity and differintiability properties of convex operators, Proc. London Math. Soc. 44(1982), 420444.Google Scholar
[Bo-Pe-Th] Borwein, J. M., Penot, J-R, Théra, M., Conjugate convex operators, Journal of Math. Anal, and Appl. 102(1984), 399414.Google Scholar
[Ce] Cellina, A., A fixed point theorem for subsets of L1, multifunctions and integrands. Catania, 1983. Lecture Notes in Math. 1091, Springer-Verlag, 1984.Google Scholar
[Du] Dugundji, J., Topology. Allyn and Bacon, Inc., Boston, 1970.Google Scholar
[E] Engleking, R., General Topology. Polish Scientific Publishers, Warsaw, 1977.Google Scholar
[Ho] Holmes, R. B., Geometric functional analysis and its applications. Springer-Verlag, 1975.Google Scholar
[Ja] Jameson, G. J. O., Topology and normed spaces. Chipman and Hall, London, 1974.Google Scholar
[Ku] Kuratowski, K., Topology I. PWN-Academic Press, 1966.Google Scholar
[Lee-Spa] Lechicki, A., Spakowski, A., A note on intersection of lower semicontinuous multifunctions, Proc. Amer. Math. Soc. (1) 95(1986), 114122.Google Scholar
[L-P] Luchetti, R., Patrone, F., Closure and upper semicontinuity results in mathematical programming, Nash and economic equilibria, Optimization 17(1980), 619628.Google Scholar
[Lux-Za] W. Luxemburg, A. J., Zaanen, A. C., Riesz Spaces, Vol. 1, North-Holland, 1971.Google Scholar
[No] Noll, D., Continuous affine support mappings for convex operators, J. of Func. Anal., (2)76(1988), 411 431.Google Scholar
[Pe-Th] Penot, J-P., Théra, M., Semicontinuous mappings in general topology, Ark. Mat. (2)38(1982), 158166.Google Scholar
[Ro] Robert, R., Convergence de fonctionnelles convexes, C.R. Acad. Sci. Paris 278(1973), 905907.Google Scholar
[Sch﹜] Schaeffer, H. H., Halbgeordnete lokalkonvex Vectorrame, 111, Math. Ann. 141(1960), 113142.Google Scholar
[SCI12] Schaeffer, H. H., Topological vector spaces. Springer-Verlag, 1970.Google Scholar
[Spa] Spakowski, A., On approximation by step multifunctions, Comment. Math. (2)28(1985), 363371.Google Scholar
[Str] Stromberg, K. R., Introduction to classical real analysis. Wardsworth International Mathematics Series.Google Scholar
[Th] Théra, M., Étude des fonctions convexes vectorielles semi-continues. Thèse, Université de Pau, 1978.Google Scholar
[Van Go] van Gool, F., Semicontinuousfunctions with values in a uniform ordered space. Preprint 559, University of Utrecht, 1989.Google Scholar
[Yo] Yosida, K., Functional analysis. Springer-Verlag, New York, 1978.Google Scholar