Published online by Cambridge University Press: 20 November 2018
Rings (all of which are assumed to be associative) with no non-zero nilpotent elements will be called reduced rings; R is a reduced ring if and only if x2=0 implies x=0, for all x∈R. In 2. we prove that the following conditions on an annihilator ideal I of a reduced ring are equivalent: I is a maximal annihilator, I is prime, I is a minimal prime, I is completely prime. A characterization of reduced rings with the maximum condition on annihilators is given in 3.