Published online by Cambridge University Press: 20 November 2018
We show that for certain compact right topological groups, $\overline{r(G)}$, the strong operator topology closure of the image of the right regular representation of $G$ in $L(H)$, where $H\,=\,{{L}^{2}}\,(G)$, is a compact topological group and introduce a class of representations, $R$ , which effectively transfers the representation theory of $\overline{r(G)}$ over to $G$. Amongst the groups for which this holds is the class of equicontinuous groups which have been studied by Ruppert in [10].We use familiar examples to illustrate these features of the theory and to provide a counter-example. Finally we remark that every equicontinuous group which is at the same time a Borel group is in fact a topological group.