Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T04:11:14.214Z Has data issue: false hasContentIssue false

Representations of Lie Groups By Contact Transformations, I: Compact Groups

Published online by Cambridge University Press:  20 November 2018

Carl Herz*
Affiliation:
Department of Mathematics and Statistics McGill University 805 Sherbrooke St. West Montreal, Quebec H3A 2K6
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The action of Lie groups as transitive groups of restricted contact transformations of compact manifolds are classified.

Résumé

Résumé

On classifie les actions de groupe de Lie par transformations de contact, au sens restreint, de variété compacte.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1990

References

1. Cartan, E., Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math, de France, 41 (1913), 5396.Google Scholar
2. Herz, C., Alternating 3-forms and exceptional simple groups of type G2, Can. J. Math. 35 (1983), 76806.Google Scholar
3. Herz, C., Représentations de groupes de Lie par transformations de contact, C. R. Acad. des Sciences Paris 301 (1985) 511512.Google Scholar
4. Herz, C., Representations of Lie groups by contact transformations, II: non-compact simple groups,Google Scholar
5. Wallach, N., Harmonie Analysis on Homogeneous Spaces. (Marcel Dekker, New York 1973).Google Scholar