Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:40:19.175Z Has data issue: false hasContentIssue false

Representation of Functions as Weierstrass- Transforms

Published online by Cambridge University Press:  20 November 2018

H.P. Heinig*
Affiliation:
McMaster University, Hamilton, Ontario University of Alberta, Edmonton, Alberta
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Weierstrass - respectively Weierstrass - Stieltjes transform of a function F(t) or μ(t) is defined by

1.1

and

1.2

for all x for which these integrals converge. In what follows we shall always assume that F(t) is Lebesgue integrable in every finite interval and that μ(t) is a function of bounded variation.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

References

1. Cooper, J. L. B., Umkehrformeln fur Fourier Transformationen, Approximations - und Interpolationstheory Sonderdruck, I.S N.M. vol. 5 (1966) Birkhauser Verlag, Stuttgart.Google Scholar
2. B, J. L.. Cooper, The Representation of Functions as Laplace transforms. Math. Annalen 159 223-233 (1966).Google Scholar
3. Nessel, R. J., Uber die DarstellungholomorpherFunktionen durch Weierstras - und Weier strass - Stieltjes Intègrale; J. F. reine u. angew. Math. 218, (1966) (31- 50).Google Scholar
4. Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals; Oxford (1933).Google Scholar
5. Widder, D. V., The Laplace Transform; Princeton (1944).Google Scholar