No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Soit $K$ un corps de nombres de degré sur $\mathbb{Q}$ inférieur ou égal à 2. On se propose dans ce travail de faire quelques remarques sur la question de l'existence de deux éléments non nuls $a$ et $b$ de $K$, et d'un entier $n\,\ge \,4$, tels que l'équation $a{{x}^{n}}\,+\,b{{y}^{n\,}}=\,1$ possède au moins trois points distincts non triviaux. Cette étude se ramène à la recherche de points rationnels sur $K$ d'une variété projective dans ${{\mathbb{P}}^{5}}$ de dimension 3, ou d'une surface de ${{\mathbb{P}}^{3}}$.