Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T07:34:22.943Z Has data issue: false hasContentIssue false

Remarks on Inner Functions and Optimal Approximants

Published online by Cambridge University Press:  20 November 2018

Catherine Bénéteau
Affiliation:
Department of Mathematics, University of South Florida, Tampa, FL 33620, USA, e-mail : [email protected]
Matthew C. Fleeman
Affiliation:
Baylor University, Waco, TX 76710, USA, e-mail : [email protected]
Dmitry S. Khavinson
Affiliation:
Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA, e-mail : [email protected]
Daniel Seco
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de Barcelona, 08007 Barcelona, Spain, e-mail : [email protected]
Alan A. Sola
Affiliation:
Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden, e-mail : [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the concept of inner function in reproducing kernelHilbert spaces with an orthogonal basis of monomials and examine connections between inner functions and optimal polynomial approximants to ${1}/{f}\;$, where $f$ is a function in the space. We revisit some classical examples from this perspective, and show how a construction of Shapiro and Shields can be modiûed to produce inner functions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[1] Aleman, A., Richter, S., and Sundberg, C., Beurling's theorem for the Bergman space. Acta Math. 177 (1996), 275310. http://dx.doi.org/10.1007/BF02392623Google Scholar
[2] Bénéteau, C., Condori, A. A., Liaw, C., Seco, D., and Sola, A. A., Cydicity in Dirichlet-type spaces and extremal polynomials. J. Anal. Math. 126 (2015), 259286. http://dx.doi.Org/10.1007/s11854-015-0017-1Google Scholar
[3] Bénéteau, C., Khavinson, D., Liaw, C., Seco, D., and Sola, A. A., Orthogonal polynomials, reproducing kernels, and zeros of optimal approximants. J. London Math. Soc. 94 (2016), 726746. http://dx.doi.Org/10.1112/jlms/jdwO57Google Scholar
[4] Bénéteau, C., Khavinson, D., Liaw, C., Seco, D., and Simanek, B., Zeros of optimal polynomial approximants: Jacobi matrices and Jentzsch-type theorems. arxiv:1606.08615Google Scholar
[5] Beurling, A., On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1948), 239255. http://dx.doi.org/10.1007/BF02395019Google Scholar
[6] Carswell, B., Duren, P., and Stessin, M., Multiplication invariant subspaces of the Bergman space. Indiana Univ. Math. J. 51 (2002), no. 4, 931-961. http://dx.doi.Org/10.1512/iumj.2002.51.2184Google Scholar
[7] Duren, P., Theory of Hp spaces. Second Edition, Dover Publications, Mineola, NY, 2000.Google Scholar
[8] Duren, P., Khavinson, D., Shapiro, H., and Sundberg, C., Contractive zero-divisors in Bergman spaces. Pacific J. Math. 157 (1993), 3756. http://dx.doi.Org/10.2140/pjm.1993.157.37Google Scholar
[9] Duren, P., Khavinson, D., Shapiro, H., and Sundberg, C., Invariant subspaces in Bergman spaces and the biharmonic equation, Michigan Math. J. 41 (1994), 247259. http://dx.doi.org/10.1307/mmjV1029004992Google Scholar
[10] Duren, P. and Schuster, A., Bergman spaces. Mathematical Surveys and Monographs, 100. American Mathematical Society, Providence, RI, 2004. http://dx.doi.Org/10.1090/surv/100Google Scholar
[11] El-Fallah, O., Kellay, K., Mashreghi, J., and Ransford, T., A primer on the Dirichlet space. Cambridge Tracts in Mathematics, 203. Cambridge University Press, Cambridge, 2014.Google Scholar
[12] Fricain, E., Mashreghi, J., and Seco, D., Cydicity in reproducing kernel Hilbert spaces of analytic functions. Comput. Methods Funct. Theory 14 (2014), 665680. http://dx.doi.org/!0.1007/s40315-014-0073-zGoogle Scholar
[13] Halmos, P. R., Shifts on Hilbert spaces. J. Reine Angew. Math. 208 (1961), 102112. http://dx.doi.Org/10.1515/crll.1961.208.102Google Scholar
[14] Hansbo, J., Reproducing kernels and contractive divisors in Bergman spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). 232 (1996), no. Issled. po Linein. Oper. i Teor. Funktsii. 24,174-198.Google Scholar
[15] Hedenmalm, H., A factorization theorem for square area-integrable analytic functions. J. Reine Angew. Math. 422 (1991), 4568. http://dx.doi.Org/10.1515/crll.1991.422.45Google Scholar
[16] Hedenmalm, H., Korenblum, B., and Zhu, K., Theory of Bergman spaces. Graduate Texts in Mathematics, 199. Springer-Verlag, New York, 2000. http://dx.doi.Org/10.1007/978-1-4612-0497-8Google Scholar
[17] Hedenmalm, H. and Zhu, K., On the failure of optimal factorization for certain weighted Bergman spaces. Complex Variables Theory Appl. 19 (1992), 165176.Google Scholar
[18] Khavinson, D., Lance, T., and Stessin, M., Wandering property in the Hardy space. Michigan Math. J. 44 (1997), no. 3, 597606. http://dx.doi.org/10.1307/mmj71029005790Google Scholar
[19] Korenblum, B., Outer functions and cyclic elements in Bergman spaces. J. Funct. Anal. 115 (1993), 104118. http://dx.doi.org/10.1006/jfan.1993.1082Google Scholar
[20] Lance, T., and Stessin, M., Multiplication invariant subspaces of Hardy spaces. Canad. J. Math. 49 (1997), no. 1, 100118. http://dx.doi.org/10.4153/CJM-1997-005-9Google Scholar
[21] Paulsen, V. and Raghupathi, M., An introduction to the theory of reproducing kernel Hilbert spaces. Cambridge Studies in Advanced Mathematics, 152. Cambridge University Press, Cambridge, 2016. http://dx.doi.Org/10.1017/CBO9781316219232Google Scholar
[22] Richter, S., Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math. 386 (1988), 205220. http://dx.doi.Org/1 0.1 51 5/crll.1 988.386.205Google Scholar
[23] Seco, D., Some problems on optimal approximants. In: Recent progress on operator theory and approximation in spaces of analytic functions. Contemp. Math., 679. American Mathematical Society, Providence, RI, 2016, pp. 193-205.Google Scholar
[24] Shapiro, H. and Shields, A. L., On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Z. 80 (1962), 217229. http://dx.doi.Org/10.1007/BF01162379Google Scholar
[25] Shields, A. I., Weighted shift operators and analytic function theory. In: Topics in operator theory. Math. Surveys, 13. American Mathematical Society, Providence, RI, 1974, pp. 49-128.Google Scholar