Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T17:03:34.378Z Has data issue: false hasContentIssue false

Relative Equilibria in Curved Restricted 4-body Problems

Published online by Cambridge University Press:  20 November 2018

Sawsan Alhowaity
Affiliation:
Department of Mathematics, Shaqra University, Saudi Arabia, e-mail : [email protected] Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia
Florin Diacu
Affiliation:
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia Yangtze Center of Mathematics, Sichuan University, Chengdu, China Yale-NUS College, National University of Singapore, Singapore, e-mail : [email protected]
Ernesto Pérez-Chavela
Affiliation:
Department of Mathematics, ITAM, México, e-mail : [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the curved $4$-body problems on spheres and hyperbolic spheres. After obtaining a criterion for the existence of quadrilateral configurations on the equator of the sphere, we study two restricted $4$-body problems, one in which two masses are negligible and another in which only one mass is negligible. In the former, we prove the evidence square-like relative equilibria, whereas in the latter we discuss the existence of kite-shaped relative equilibria.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[1] Bolyai, W. and Bolyai, J., Geometrische Untersuchungen. Teubner, Leipzig-Berlin, 1913.Google Scholar
[2] Carifiena, J. E., Rafiada, M. E., and Santander, M., Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2. J. Math. Phys. 46 (2005), 052702. http://dx.doi.Org/10.1063/1.1893214Google Scholar
[3] Diacu, F., On the singularities of the curved N-body problem. Trans. Amer. Math. Soc. 363 (2011), 22492264. http://dx.doi.org/10.1090/S0002-9947-2010-05251-1Google Scholar
[4] Diacu, F., Polygonal homographie orbits of the curved 3-body problem. Trans. Amer. Math. Soc. 364 (2012), 27832802. http://dx.doi.org/10.1090/S0002-9947-2011-05558-3Google Scholar
[5] Diacu, F., Relative equilibria of the curved N-body problem. Atlantis Studies in Dynamical Systems, vol. 1, Atlantis Press, Paris, 2012. http://dx.doi.org/10.2991/978-94-91216-68-8Google Scholar
[6] Diacu, F., Relative equilibria of the 3-dimensional curved n-body problem. Mem. Amer. Math. Soc. 228 (2013), 1017.Google Scholar
[7] Diacu, F., The curved N-body problem: risks and rewards. Math. Intelligencer 35 (2013), 2433. http://dx.doi.org/10.1007/s00283-013-9397-1Google Scholar
[8] Diacu, F., The classical N-body problem in the context of curved space. Canad. J. Math. 69 (2017), 790806. http://dx.doi.Org/1 0.41 53/CJM-2O1 6-041 -2Google Scholar
[9] Diacu, F., Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem. J. Math. Phys. 57 (2016), 112701, 20. http://dx.doi.Org/10.1063/1.4967443Google Scholar
[10] Diacu, F. and Kordlou, S., Rotopulsators of the curved N-body problem. J. Differential Equations 255 (2013), 27092750. http://dx.doi.Org/10.1016/j.jde.2013.07.009Google Scholar
[11] Diacu, F., Martinez, R., Pérez-Chavela, E., and Simo, C., On the stability of tetrahedral relative equilibria in the positively curved 4-body problem. Phys. D 256/257 (2013), 2135. http://dx.doi.Org/10.1016/j.physd.2O13.04.007Google Scholar
[12] Diacu, F. and Pérez-Chavela, E., Homographie solutions of the curved 3-body problem. J. Differential Equations 250 (2011), 340366. http://dx.doi.Org/10.1016/j.jde.2010.08.011Google Scholar
[13] Diacu, F., Pérez-Chavela, E., and Reyes Victoria, J. G., An intrinsic approach in the curved N-body problem. The negative curvature case. J. Differential Equations 252 (2012), 45294562. http://dx.doi.org/!0.1016/j.jde.2012.01.002Google Scholar
[14] Diacu, F., Pérez-Chavela, E., and Santoprete, M., Saari's conjecture for the collinear N-body problem. Trans. Amer. Math. Soc. 357 (2005), 42154223. http://dx.doi.org/10.1090/S0002-9947-04-03606-2Google Scholar
[15] Diacu, F., Pérez-Chavela, E., and Santoprete, M., The N-body problem in spaces of constant curvature. Parti: Relative equilibria. J. Nonlinear Sci. 22 (2012), 247266. http://dx.doi.Org/10.1007/s00332-011-9116-zGoogle Scholar
[16] Diacu, F., Pérez-Chavela, E., and Santoprete, M., The N-body problem in spaces of constant curvature. Part II: Singularities. J. Nonlinear Sci. 22 (2012), 267275. http://dx.doi.org/10.1007/s00332-011-9117-yGoogle Scholar
[17] Diacu, F. and Popa, S., All Lagrangian relative equilibria have equal masses. J. Math. Phys. 55 (2014), 112701. http://dx.doi.Org/10.1063/1.4900833Google Scholar
[18] Diacu, F., Sânchez-Cerritos, J. M., and Zhu, S., Stability of fixed points and associated relative equilibria of the i-body problem on S1 and S2 . J. Dyn. Differential Equations 30 (2016), 209225. http://dx.doi.org/10.1007/s10884-016-9550-6Google Scholar
[19] Diacu, F. and Thorn, B., Rectangular orbits of the curved 4-body problem. Proc. Amer. Math. Soc. 143 (2015), 15831593. http://dx.doi.org/10.1090/S0002-9939-2014-12326-4Google Scholar
[20] Dubrovine, B., Fomenko, A., and Novikov, P., Modern Geometry, methods and applications. I, II, and III. (Russian), Springer-Verlag, New York, 1984, 1990.Google Scholar
[21] Garcia-Naranjo, L. C., Marrero, J. C., Pérez-Chavela, E., and Rodriguez-Olmos, M., Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2. J. Differential Equations 260 (2016), 63756404. http://dx.doi.Org/10.1016/j.jde.2O15.12.044Google Scholar
[22] Kozlov, V. V. and Harin, A. O., Kepler's problem in constant curvature spaces. Celestial Mech. Dynam. Astronom. 54 (1992), 393399. http://dx.doi.Org/10.1007/BF00049149Google Scholar
[23] Kragh, H., Is space Flat? Nineteenth century astronomy and non-Euclidean geometry. J. Astr. Hist. Heritage 15 (2012), 149158.Google Scholar
[24] Lobachevsky, N. I., The new foundations of geometry with full theory of parallels. (Russian), 1835-1838, in Collected Works, vol. 2, GITTL, Moscow, 1949.Google Scholar
[25] Martinez, R. and Simo, C., On the stability of the Lagrangian homographie solutions in a curved three-body problem on S2 . Discrete Contin. Dyn. Syst. 33(2013) 11571175.Google Scholar
[26] Martinez, R. and Simo, C., Relative equilibria of the restricted 3-body problem in curved spaces. Celestial Mech. Dynam. Astronom. 128 (2017), 221259. http://dx.doi.org/10.1007/s10569-016-9750-8Google Scholar
[27] Nomizu, K. and Sasaki, T., A new model of unimodular-affinely homogeneous surfaces. ManuscriptaMath. 73 (1991), 3944. http://dx.doi.org/10.1007/BF02567627Google Scholar
[28] Pérez-Chavela, E. and Victoria, J. G. Reyes, An intrinsic approach in the curved N-body problem. The positive curvature case. Trans. Amer. Math. Soc. 364 (2012), 38053827. http://dx.doi.org/10.1090/S0002-9947-2012-05563-2Google Scholar
[29] Schering, E., Die Schwerkraft im Gaussischen Ràume. Nachr. Kônigl. Ges. Wiss. Gôtt. 15 (1870), 311321.Google Scholar
[30] Schering, E., Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemmanschen Ràumen. Nachr. Kônigl. Ges. Wiss. Gôtt. 6 (1873), 149159.Google Scholar
[31] Shchepetilov, A. V., Nonintegrability of the two-body problem in constant curvature spaces. J. Phys. A: Math. Gen. V. 39 (2006), 57875806; corrected version at math.DS/0601382. http://dx.doi.Org/10.1088/0305-4470/39/20/011Google Scholar
[32] Tibboel, P., Polygonal homographie orbits in spaces of constant curvature. Proc. Amer. Math. Soc. 141 (2013), 14651471. http://dx.doi.org/10.1090/S0002-9939-2012-11410-8Google Scholar