No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
For a finite abelian group G let λ(G) be the least positive integer such that λ(G)G = 0. Let be the least integer such that λ(G) | (λ(G) divides ) and if 2 | λ(G) then 4 | . For a finitely generated abelian group G let GT be the subgroup of G made up of all elements of G of finite order, and let GF = G/GT. For a simply-connected C-W complex X, let be the smallest class of abelian groups containing the groups .