Published online by Cambridge University Press: 20 November 2018
Let X and Y be two Banach spaces and let B(X, Y) denote the set of bounded linear operators with domain X and range in 7. For T∈B(X, Y), let N(T) denote the null space and R(T) the range of T. J. I. Nieto [5, p. 64] has proved the following two interesting results. An operator T∈B(X, Y) has a left regularizer, i.e., there exists a Q∈B(Y, X) such that QT=I+A, where I is the identity on X and A∈B(X, X) is a compact operator, if and only if dim N(T)<∞ and R(T) has a closed complement.