Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T08:35:07.019Z Has data issue: false hasContentIssue false

Recouvrements Ponctuellements Dénombrablespar des Ensembles Négligeables

Published online by Cambridge University Press:  20 November 2018

Maxim R. Burke*
Affiliation:
University of Toronto, TorontoOntario M5S 1A1
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1988

References

1. Brzuchowski, J., Cichon, J., Grzegorek, E. and -Nardzewski, C. Ryll, On the existence of non-measurable unions, Bull. Acad. Polon. Sci., Ser. Sci. Math. 27 (1979), pp. 447448.Google Scholar
2. Bukovsky, L., Any partition into Lebesgue measure zero sets produces a non-measurable set, Bull, Acad. Polon. Sci., Ser. Sci. Math. 6 (1979), pp. 431435.Google Scholar
3. Fleissner, W. G., Current research on Q sets, Colloq. Math. Soc. Janos Bolyai 23 Topology Vol. I, pp. 413431.Google Scholar
4. Fremlin, D. H., Measure-additive coverings and measurable selectors, to appear.Google Scholar
5. Fremlin, D. H., Measurable selections and measure-additive coverings, in Measure Theory (Oberwolfach 1981), Lecture Notes in Mathematics, Vol. 945, Springer-Verlag, Berlin.Google Scholar
6. Kunen, K., Random and Cohen reals, in Handbook of Set-Theoretic Topology, North Holland, 1984.Google Scholar
7. Prikry, K., On images of the Lebesgue measure, unpublished manuscript, 1977.Google Scholar
8. Rothberger, F., Eine Àquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen und Sierpihskischen Mengen, Fund. Math. 30 (1938), pp. 215217.Google Scholar