Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T06:38:23.038Z Has data issue: false hasContentIssue false

Real Hypersurfaces in Complex Projective Space Whose Structure Jacobi Operator is Lie đ”»-parallel

Published online by Cambridge University Press:  20 November 2018

Juan de Dios PĂ©rez
Affiliation:
Departamento de GeometrĂ­a y TopologĂ­a, Universidad de Granada, 18071, Granada, Spain e-mail: [email protected]
Young Jin Suh
Affiliation:
Department of Mathematics, Kyungpook National University, Taegu, 702-701, Korea e-mail: e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the non-existence of real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\mathbb{D}$-parallel and satisfies a further condition.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Berndt, J., Real hypersurfaces with constant principal curvatures in complex space forms. In: Geometry and Topology of Submanifolds, II (Avignon, 1988), World Scientific Publishing, Teaneck, NJ, 1990, 10–19. Google Scholar
[2] Ki, U. H. and Suh, Y. J., On real hypersurfaces of a complex projective space. Math. J. Okayama Univ. 32(1990), 207–221. Google Scholar
[3] Kimura, M., Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc. 296(1986), 137–149. http://dx.doi.org/10.1090/S0002-9947-1986-0837803-2 Google Scholar
[4] Kon, M., Pseudo-Einstein real hypersurfaces in complex space forms. J. Differential Geom. 14(1979), 339–354. Google Scholar
[5] Kwon, J. H. and H. Nakagawa, A note on real hypersurfaces of a complex projective space. J. Austral. Math. Soc., Ser. A 47(1989), 108–113. http://dx.doi.org/10.1017/S1446788700031268 Google Scholar
[6] Maeda, Y., On real hypersurfaces of a complex projective space. J. Math. Soc. Japan 28(1976), 529–540. http://dx.doi.org/10.2969/jmsj/02830529 Google Scholar
[7] Montiel, S., Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Japan 37(1985), 515–535. http://dx.doi.org/10.2969/jmsj/03730515 Google Scholar
[8] Okumura, M., On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212(1975), 355–364. http://dx.doi.org/10.1090/S0002-9947-1975-0377787-X Google Scholar
[9] Ortega, M., PĂ©rez, J. D. and Santos, F. G., Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat space forms. Rocky Mountain J. Math. 36(2006), 1603–1613. http://dx.doi.org/10.1216/rmjm/1181069385 Google Scholar
[10] PĂ©rez, J. D. and Santos, F. G., On the Lie derivative of structure Jacobi operator of real hypersurfaces in complex projective space. Publ. Math. Debrecen 66(2005), 269–282. Google Scholar
[11] PĂ©rez, J. D. and Santos, F. G., Real hypersurfaces in complex projective space whose structure Jacobi operator satisfies rXR_ = LXR. Rocky Mountain J. Math. 39(2009), 1293–1301. http://dx.doi.org/10.1216/RMJ-2009-39-4-1293 Google Scholar
[12] PĂ©rez, J. D., Santos, F. G. and Suh, Y. J., Real hypersurfaces in complex projective space whose structure Jacobi operator is LieΔ-parallel. Diff. Geom. Appl. 22(2005), 181–188. http://dx.doi.org/10.1016/j.difgeo.2004.10.005 Google Scholar
[13] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures. J. Math. Soc. Japan 27(1975), 45–53. http://dx.doi.org/10.2969/jmsj/02710043 Google Scholar
[14] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures II. J. Math. Soc. Japan 27(1975), 507–516. http://dx.doi.org/10.2969/jmsj/02740507 Google Scholar