No CrossRef data available.
Article contents
Rational Homogeneous Algebras
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
An algebra $A$ is homogeneous if the automorphism group of
$A$ acts transitively on the one-dimensional subspaces of
$A$. The existence of homogeneous algebras depends critically on the choice of the scalar field. We examine the case where the scalar field is the rationals. We prove that if
$A$ is a rational homogeneous algebra with
$\dim\,A\,>\,1$, then
${{A}^{2}}\,=\,0$.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2012
References
[1] Djokovič, D. Ž., Real homogeneous algebras. Proc. Amer. Math. Soc.
41(1973), 457–462.Google Scholar
[2] Djokovič, D. Ž. and Sweet, L. G., Infinite homogeneous algebras are anticommutative. Proc. Amer. Math. Soc.
127(1999), no. 11, 3169–3174. http://dx.doi.org/10.1090/S0002-9939-99-04910-2
Google Scholar
[3] Djokovič, D. Ž. and Zhao, K., Real homogeneous algebras as truncated division algebras and their automorphism groups. Algebra Colloq.
11(2004), no. 1, 11–20.Google Scholar
[4] Gross, F., Finite automorphic algebras over GF(2)
. Proc. Amer. Math. Soc.
31(1972), 10–14.Google Scholar
[5] Ivanov, D. N., Homogeneous algebras over GF(2)
. Vestnik Moskov. Univ. Ser. I Mat. Mekh.
1982(1982), 69–72.Google Scholar
[6] Kostrikin, A. I., On homogeneous algebras. Izvestiya Akad. Nauk, SSSR Ser. Mat.
29(1965), 471–484.Google Scholar
[7] Kubota, K. K., Factors of polynomials under composition. J. Number Theory
4(1972), 587–595. http://dx.doi.org/10.1016/0022-314X(72)90030-3
Google Scholar
[8] MacDougall, J. A. and Sweet, L. G., Three dimensional homogeneous algebras. Pacific J. Math.
74(1978), no. 1, 153–162.Google Scholar
[9] Shult, E. E., On the triviality of finite automorphic algebras. Illinois J. Math.
13(1969), 654–659.Google Scholar
[10] Sweet, L. G., On the triviality of homogeneous algebras over an algebraically closed field
Proc. Amer. Math. Soc.
48(1975), 321–324. http://dx.doi.org/10.1090/S0002-9939-1975-0364382-7
Google Scholar
[12] Sweet, L. G. and MacDougall, J. A., Four-dimensional homogeneous algebras. Pacific J. Math.
129(1987), no. 2, 375–383.Google Scholar
[13] Sweet, L. G. and MacDougall, J. A., A decomposition theorem for homogeneous algebras. J. Austral. Math. Soc.
72(2002), no. 1, 47–56. http://dx.doi.org/10.1017/S1446788700003578
Google Scholar