Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-05T06:41:11.527Z Has data issue: false hasContentIssue false

Rarity of pseudo-null Iwasawa modules for p-adic Lie extensions

Published online by Cambridge University Press:  10 January 2025

Takenori Kataoka*
Affiliation:
Department of Mathematics, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

In this article, we obtain a necessary and sufficient condition for the pseudo-nullity of the p-ramified Iwasawa module for p-adic Lie extensions of totally real fields. It is applied to answer the corresponding question for the minus component of the unramified Iwasawa module for CM-fields. The results show that the pseudo-nullity is very rare.

MSC classification

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work is supported by JSPS KAKENHI (Grant No. 22K13898).

References

Brumer, A., Pseudocompact algebras, profinite groups and class formations . J. Algebra 4(1966), 442470.Google Scholar
Coates, J. and Sujatha, R., Fine Selmer groups of elliptic curves over $p$ -adic Lie extensions . Math. Ann. 331(2005), no. 4, 809839.Google Scholar
Fukaya, T. and Kato, K., A formulation of conjectures on $p$ -adic zeta functions in noncommutative Iwasawa theory. In: Proceedings of the St. Petersburg mathematical society, volume 219 of American Mathematical Society Translations: Series 2, 12, American Mathematical Society, Providence, RI, 2006, pp. 185.Google Scholar
Greenberg, R., Iwasawa theory—Past and present . In: Class field theory—Its centenary and prospect (Tokyo, 1998), volume 30 of Advanced Studies in Pure Mathematics, The Mathematical Society of Japan, Tokyo, 2001, pp. 335385.Google Scholar
Greither, C., Kataoka, T., and Kurihara, M., Fitting ideals of $p$ -ramified Iwasawa modules over totally real fields . Selecta Math. (N.S.) 28(2022), no. 1, Paper No. 14, 48.Google Scholar
Hachimori, Y. and Sharifi, R. T., On the failure of pseudo-nullity of Iwasawa modules . J. Algebraic Geom. 14(2005), no. 3, 567591.Google Scholar
Kataoka, T., Higher codimension behavior in equivariant Iwasawa theory for CM-fields . J. Ramanujan Math. Soc. 38(2023), no. 1, 7195.Google Scholar
Kataoka, T.. Kida’s formula via Selmer complexes. Preprint, 2024. arXiv:2401.07036Google Scholar
Kataoka, T. and Kurihara, M., Minimal resolutions of Iwasawa modules . Res. Number Theory 10(2024), no. 3, Paper No. 64.Google Scholar
Lazard, M., Groupes analytiques $p$ -adiques . Inst. Hautes Études Sci. Publ. Math. 26(1965), 389603.Google Scholar
Nekovář, J., Selmer complexes . Astérisque 310(2006), viii+559.Google Scholar
Neukirch, J., Schmidt, A., and Wingberg, K., Cohomology of number fields. 2nd ed., volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2008.Google Scholar
Serre, J.-P., Galois cohomology. english edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author.Google Scholar
Serre, J.-P., Lie algebras and Lie groups: 1964 lectures given at Harvard University, volume 1500 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2006. Corrected fifth printing of the second (1992) edition.Google Scholar
Venjakob, O., On the structure theory of the Iwasawa algebra of a $p$ -adic Lie group . J. Eur. Math. Soc. (JEMS) 4(2002), no. 3, 271311.Google Scholar
Venjakob, O., On the Iwasawa theory of $p$ -adic Lie extensions . Compositio Math. 138(2003), no. 1, 154.Google Scholar