Published online by Cambridge University Press: 20 November 2018
A well known theorem by S. Banach states that a contractive function f: X → X on a complete metric space X has a fixed point, and that this fixed point is unique. This result has a partial extension to multi-functions: every contractive compact-valued multi-function on a complete metric space has a fixed point (see Definition 1 and Theorem 1 below). But simple examples show that this fixed point is no longer unique. We investigate some questions concerned with the properties of the fixed point set Φ of a contractive multi-function φ. Is, e.g., Φ connected if φ is connected-valued? Is Φ convex if φ is convex-valued? The answer is yes if X is the real line (§2), but examples in §3 and §4 show that in general the answer is no.