Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T03:22:30.511Z Has data issue: false hasContentIssue false

Principal Irreducible Lie-Algebra Modules

Published online by Cambridge University Press:  20 November 2018

Frank J. Servedio*
Affiliation:
McMaster University, Hamilton, Ontario L8s 4K1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let V be a finite dimensional vector space over k, a field of characteristic 0, L be an algebraic Lie-subalgebra of Endk(V), with the latter a Lie algebra in the canonical way, and let V be an L-module in the canonical way. For X ∈ V, let LX = {AX | A ∈ L{. Call V a principal L-module if ∃ X ∈ V such that LX= V; X will be called a principal generator of the L-module V.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1978

References

1. Jacobson, Nathan, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, no. 10 Interscience, New York 1962, p.81.Google Scholar
2. Borel, Armand, Linear algebraic Groups, Benjamin, W. A., 1969, New York, Chapter AG §15.Google Scholar
3. Cartan, Séminaire H. et Chevalley, C., 8e année; 1955/56. Géométrie Algébrique, Secrétariat Mathématique, Paris, 1956; P. Cartier, Expose 13, Prop. 1, pp. 13-30.Google Scholar
4. Servedio, F. J., Prehomogeneous Vector Spaces and Varieties, Transactions of the A.M.S., Vol. 176, February 1973, p. 421-444.Google Scholar
5. Sato, Mikio The Theory of Prehomogeneous Vector Spaces, Sugaku no Ayumi, c/o S.S.S, Dr. Y. Morita, Department of Mathematics, Faculty of Sciences, University of Tokyo, Tokyo, Japan.Google Scholar
6. Servedio, F. J., Affine Open Orbits, Reductive Isotropy Groups, and Dominant Gradient Morphisms; A Theorem of Mikio Sato, Pacific Journal of Mathematics, Vol. 72, No. 2, 1977, p. 537.Google Scholar
7. Andreev, I.E. M., Vinberg, E. B., and Elasvili, A. G., Orbits of Greatest Dimension in Semi-Simple Linear Lie Groups, Funckional Anal, i Prilozen 1, (1967) no. 4, 3-7 = Functional Analysis and Applications (1) 1967, p. 257-261.Google Scholar
8. Sato, M., Kimura, T., A Classification of Irreducible Prehomogeneous Vector Spaces and their Relative Invariants, Nagoya Math. Journal, Vol. (65), 1977.Google Scholar