Published online by Cambridge University Press: 20 November 2018
The well-known Falkner–Skan equation is one of the most important equations in laminar boundary layer theory and is used to describe the steady two-dimensional flow of a slightly viscous incompressible fluid past wedge shaped bodies of angles related to $\text{ }\!\!\lambda\!\!\text{ }\!\!\pi\!\!\text{ /2}$, where $\text{ }\!\!\lambda\!\!\text{ }\,\in \,\mathbb{R}$ is a parameter involved in the equation. It is known that there exists ${{\text{ }\!\!\lambda\!\!\text{ }}^{*}}\,<\,0$ such that the equation with suitable boundary conditions has at least one positive solution for each $\text{ }\!\!\lambda\!\!\text{ }\,\ge \,{{\text{ }\!\!\lambda\!\!\text{ }}^{*}}$ and has no positive solutions for $\text{ }\!\!\lambda\!\!\text{ }\,<\,{{\text{ }\!\!\lambda\!\!\text{ }}^{*}}$ . The known numerical result shows ${{\text{ }\!\!\lambda\!\!\text{ }}^{*}}\,=\,-0.1988$ . In this paper, ${{\text{ }\!\!\lambda\!\!\text{ }}^{*}}\,\in \,[-0.4,\,-0.12]$ is proved analytically by establishing a singular integral equation which is equivalent to the Falkner–Skan equation. The equivalence result provides new techniques to study properties and existence of solutions of the Falkner–Skan equation.