Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T14:50:51.781Z Has data issue: false hasContentIssue false

Pointwise Compact Spaces

Published online by Cambridge University Press:  20 November 2018

Pedro Morales*
Affiliation:
Université De Montréal, Montréal Québec.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1962, J. M. G. Fell [5] indicated the important role played by certain topological spaces which, though locally compact in a specialized sense, do not, in general, satisfy even the weakest separation axiom. He called them "locally compact". These were called "punktal kompakt" by Flachsmeyer [6] and to avoid confusion, we shall call them pointwise compact spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1973

References

1. Arens, R., A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480495.Google Scholar
2. Brown, R., Function spaces and product topologies, Quart. J. Math. Oxford, Ser. (2) 15 (1964), 238250.Google Scholar
3. Cohen, D. E., Spaces with weak topology, Quart. J. of Math., Oxford, Ser. (2) 5 (1954), 7780.Google Scholar
4. Cohen, D. E., Products and carrier theory, Proc. London Math. Soc. (3) 7 (1957), 219248.Google Scholar
5. Fell, J. M. G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472476.Google Scholar
6. Flachsmeyer, J., Verschiedene Topologisierungen im Raum der abgeschlossenen Mengen, Math. Nachr. 26 (1964), 321337.Google Scholar
7. Fox, R. H., On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429432.Google Scholar
8. Kelley, J., General Topology, D. Van Nostrand, New York, 1965.Google Scholar
9. Michael, E., Local compactness and Cartesian products of quotient maps and k-spaces, Ann. Inst. Fourier (Grenoble) 18 (1968), 281286.Google Scholar
10. Poppe, H., Stetige Konvergenz und der Satz von Ascoli und Arzelà, Math Nachr. 30 (1965), 87122.Google Scholar