Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Foschini, G.
Gitlin, R.
and
Weinstein, S.
1974.
Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise.
IEEE Transactions on Communications,
Vol. 22,
Issue. 1,
p.
28.
Wills, J. M.
1989.
A counterpart to Oler's lattice‐point theorem.
Mathematika,
Vol. 36,
Issue. 2,
p.
216.
Graham, R. L.
and
Sloane, N. J. A.
1990.
Penny-packing and two-dimensional codes.
Discrete & Computational Geometry,
Vol. 5,
Issue. 1,
p.
1.
Füredi, Zoltán
1991.
The densest packing of equal circles into a parallel strip.
Discrete & Computational Geometry,
Vol. 6,
Issue. 2,
p.
95.
GRITZMANN, Peter
and
WILLS, Jörg M.
1993.
Handbook of Convex Geometry.
p.
861.
Melissen, Hans (J. B. M.)
1993.
Densest Packings of Congruent Circles in an Equilateral Triangle.
The American Mathematical Monthly,
Vol. 100,
Issue. 10,
p.
916.
TÖTH, Gábor FEJES
and
KUPERBERG, Wlodzimierz
1993.
Handbook of Convex Geometry.
p.
799.
GRITZMANN, Peter
and
WILLS, Jörg M.
1993.
Handbook of Convex Geometry.
p.
765.
Lubachevsky, B. D.
and
Graham, R. L.
1995.
Computing and Combinatorics.
Vol. 959,
Issue. ,
p.
303.
Szabó, P. G.
Csendes, T.
Casado, L. G.
and
García, I.
2001.
Optimization Theory.
Vol. 59,
Issue. ,
p.
191.
Scholl, Peter
Schürmann, Achill
and
Wills, Jörg M.
2003.
Discrete and Computational Geometry.
Vol. 25,
Issue. ,
p.
751.
Lubachevsky, Boris D.
and
Graham, Ronald
2003.
Discrete and Computational Geometry.
Vol. 25,
Issue. ,
p.
633.
Szabó, Péter Gábor
Markót, Mihály Csaba
and
Csendes, Tibor
2005.
Essays and Surveys in Global Optimization.
p.
233.
Lubachevsky, Boris D.
and
Graham, Ronald L.
2009.
Minimum perimeter rectangles that enclose congruent non-overlapping circles.
Discrete Mathematics,
Vol. 309,
Issue. 8,
p.
1947.
Jiang, Minghui
2011.
An inequality on the edge lengths of triangular meshes.
Computational Geometry,
Vol. 44,
Issue. 2,
p.
100.
LIU, QINGHAI
LI, XIANG
WU, LIDONG
DU, HAI
ZHANG, ZHAO
WU, WEILI
HU, XIAODONG
and
XU, YINFENG
2012.
A NEW PROOF FOR ZASSENHAUS–GROEMER–OLER INEQUALITY.
Discrete Mathematics, Algorithms and Applications,
Vol. 04,
Issue. 02,
p.
1250014.
Datta, Ajoy K.
Larmore, Lawrence L.
Devismes, Stephane
Heurtefeux, Karel
and
Rivierre, Yvan
2012.
Competitive Self-Stabilizing k-Clustering.
p.
476.
Du, Ding-Zhu
and
Wan, Peng-Jun
2013.
Connected Dominating Set: Theory and Applications.
Vol. 77,
Issue. ,
p.
63.
Du, Ding-Zhu
and
Wan, Peng-Jun
2013.
Connected Dominating Set: Theory and Applications.
Vol. 77,
Issue. ,
p.
105.
Du, Ding-Zhu
and
Wan, Peng-Jun
2013.
Connected Dominating Set: Theory and Applications.
Vol. 77,
Issue. ,
p.
151.