Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:27:42.908Z Has data issue: false hasContentIssue false

Oriented Matroids and Geometric Sorting

Published online by Cambridge University Press:  20 November 2018

Raul Cordovil*
Affiliation:
Centro De Física Da Matéria Condensada (INIC), Av. Prof. Gama Pinto 2, 1699 Lisboa Codex Portugal, Centro De Matemática Da, Universidade De Coimbra (INIC), Universidade De Coimbra, 3000 Coimbra, Portugal
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently Goodman and Pollack [3] have proved a theorem which can be applied to encode in a compact form the order properties of an arbitrary configuration of points in ℝd. In this note we generalise this theorem to oriented matroids.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1983

References

1. Bland, R. and Las Vergnas, M., Orientability of matroids, J. Combinatorial Theory B 24 (1978), 94123.Google Scholar
2. Folkman, J. and Lawrence, J., Oriented matroids, J. Combinatorial Theory B 25 (1978), 199236.Google Scholar
3. Goodman, J. E. and Pollack, R., Multidimensional sorting, preprint.Google Scholar
4. Las Vergnas, M., Matroïdes orientables, C.R. Acad. Sci. Paris Sér. A, 280 (1975), 6164.Google Scholar
5. Las Vergnas, M., Convexity in oriented matroids, J. Combinatorial Theory B 29 (1980), 231243.Google Scholar
6. Las Vergnas, M., Bases in oriented matroids, J. Combinatorial Theory B 25 (1978), 283289. Google Scholar
7. Las Vergnas, M., Extensions ponctuelles d'une géométrie orientée, dans “Problèmes combinatoires et théorie des graphes” Actes du Colloque International C.N.R.S. no. 260, 263268, Orsay 1976, Paris 1978.Google Scholar
8. Lawrence, J., Oriented matroids and multiply ordered sets, to appear in Linear Algebra and its Applications.Google Scholar
9. Novoa, L. G., On n-ordered sets and order completeness, Pac. J. of Math. 15 (1965), 13371345.Google Scholar