Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T14:53:30.243Z Has data issue: false hasContentIssue false

On Universal Schauder Bases in Non-Archimedean Fréchet Spaces

Published online by Cambridge University Press:  20 November 2018

Wiesław Śliwa*
Affiliation:
Faculty of Mathematics and Computer Science A. Mickiewicz University ul. Umultowska 87 61-614 Poznán Poland, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is known that any non-archimedean Fréchet space of countable type is isomorphic to a subspace of $c_{0}^{\mathbb{N}}$. In this paper we prove that there exists a non-archimedean Fréchet space $U$ with a basis $({{u}_{n}})$ such that any basis $({{x}_{n}})$ in a non-archimedean Fréchet space $X$ is equivalent to a subbasis $({{u}_{kn}})$ of $({{u}_{n}})$. Then any non-archimedean Fréchet space with a basis is isomorphic to a complemented subspace of $U$. In contrast to this, we show that a non-archimedean Fréchet space $X$ with a basis $({{x}_{n}})$ is isomorphic to a complemented subspace of $c_{0}^{\mathbb{N}}$ if and only if $X$ is isomorphic to one of the following spaces: ${{c}_{0}},\,{{c}_{0}}\,\times \,{{\mathbb{K}}^{\mathbb{N}}},\,{{\mathbb{K}}^{\mathbb{N}}},\,c_{0}^{\mathbb{N}}$. Finally, we prove that there is no nuclear non-archimedean Fréchet space $H$ with a basis $({{h}_{n}})$ such that any basis $({{y}_{n}})$ in a nuclear non-archimedean Fréchet space $Y$ is equivalent to a subbasis $({{h}_{kn}})$ of $({{h}_{n}})$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2004

References

[1] Grande-De Kimpe, N. De, On the structure of locally K-convex spaces with a Schauder basis. Indag. Math. 34 (1972), 396406.Google Scholar
[2] Grande-De Kimpe, N. De, Non-archimedean Fréchet spaces generalizing spaces of analytic functions. Indag.Math. 44 (1982), 423439.Google Scholar
[3] Grande-De Kimpe, N. De, Kąkol, J., Perez-Garcia, C. and Schikhof, W. H., Orthogonal sequences in non-archimedean locally convex spaces. Indag.Math. N.S. 11 (2000), 187195.Google Scholar
[4] Grande-De Kimpe, N. De, Kąkol, J., Perez-Garcia, C. and Schikhof, W. H., Orthogonal and Schauder bases in non-archimedean locally convex spaces. p-adic functional analysis. Ioannina 2000, 103126, Lecture Notes in Pure and Appl. Math. 222, Marcel Dekker, New York, 2001.Google Scholar
[5] Prolla, J. B., Topics in functional analysis over valued division rings. North-Holland Math. Studies 77, North-Holland Publ. Co., Amsterdam, 1982.Google Scholar
[6] van Rooij, A. C. M., Non-archimedean functional analysis. Marcel Dekker, New York, 1978.Google Scholar
[7] Schikhof, W. H., Locally convex spaces over non-spherically complete valued fields. Bull. Soc. Math. Belg. 38 (1986), 187224.Google Scholar
[8] Śliwa, W., Every infinite-dimensional non-archimedean Fréchet space has an orthogonal basic sequence. Indag.Math. N.S. (3)11 (2000), 463466.Google Scholar
[9] Śliwa, W., Examples of non-archimedean nuclear Fréchet spaces without a Schauder basis. Indag.Math. N.S. (4) 11 (2000), 607616.Google Scholar