Published online by Cambridge University Press: 20 November 2018
Let X and Y be metric spaces. This paper considers the relationship between uniform convergence in C(X, Y) and topological convergence of functions in C(X, Y), viewed as subsets of X×Y. In general, uniform convergence in C(X, Y) implies Hausdorff metric convergence which, in turn, implies topological convergence, but if X and Y are compact, then all three notions are equivalent. If C([0, 1], Y) is nontrivial arid topological convergence in C(X, Y) implies uniform converger ce then X is compact. Theorem: Let X be compact and Y be loyally compact but noncompact. Then topological convergence in C(X, Y) implies uniform convergence if and only if X has finitely many components. We also sharpen a related result of Naimpally.