Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T12:38:08.260Z Has data issue: false hasContentIssue false

On unavoidable families of meromorphic functions

Published online by Cambridge University Press:  18 November 2021

Thierry Meyrath*
Affiliation:
Department of Mathematics, University of Luxembourg, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
*

Abstract

We prove several results on unavoidable families of meromorphic functions. For instance, we give new examples of families of cardinality 3 that are unavoidable with respect to the set of meromorphic functions on $\mathbb C$ . We further obtain families consisting of less than three functions that are unavoidable with respect to certain subsets of meromorphic functions. In the other direction, we show that for every meromorphic function f, there exists an entire function that avoids f on $\mathbb C$ .

Type
Article
Copyright
© Canadian Mathematical Society, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergweiler, W. and Eremenko, A., Radially distributed values and normal families. Int. Math. Res. Not. (IMRN). 23(2019), 73567378.CrossRefGoogle Scholar
Bergweiler, W., Eremenko, A., and Hinkkanen, A., Entire functions with two radially distributed values. Math. Proc. Camb. Phil. Soc. 165(2018), 93108.CrossRefGoogle Scholar
Gol’dberg, A. A. and Ostrovskii, I. V., Value distribution of meromorphic functions, Translations of Mathematical Monographs, 236, American Mathematical Society, Providence, RI, 2008.CrossRefGoogle Scholar
Hayman, W. K., Meromorphic functions, Clarendon Press, Oxford, 1964.Google Scholar
Hayman, W. K. and Rubel, L. A., Unavoidable systems of functions. Math. Proc. Camb. Phil. Soc. 117(1995), 345351.CrossRefGoogle Scholar
Lappan, P., Avoidance criteria for normal families and normal functions, In: Begehr, H. G. W., Gilbert, R. P., and Wong, M. W. (eds.), Progress in analysis: Proceedings of the 3rd International ISAAC Congress. Vol. 1, World Scientific, Singapore, 2003, pp. 221228.CrossRefGoogle Scholar
Lappan, P., Special classes of normal families. Comput. Methods Funct. Theory. 8(2008), 133142.CrossRefGoogle Scholar
Lappan, P., A continuous function that no meromorphic function can avoid. Ann. Acad. Sci. Fenn. Math. 34(2009), 173177.Google Scholar
Logvinenko, V. N., On rational functions with disjoint graphs. Complex Var. Elliptic Equ. 26(1995), 255271.Google Scholar
Ozawa, M., On the zero-one set of an entire function. Kodai Math. Sem. Rep. 28(1977), 311316.CrossRefGoogle Scholar
Ozawa, M., On the zero-one set of an entire function II. Kodai Math. J. 2(1979), 194199.CrossRefGoogle Scholar
Rubel, L. A. and Yang, C. C., Interpolation and unavoidable families of meromorphic functions. Michigan Math. J. 20(1974), 289296.CrossRefGoogle Scholar
Rudin, W., Real and complex analysis. 3rd ed., McGraw Hill, New York, 1987.Google Scholar
Winkler, J., Zur Existenz ganzer Funktionen bei vorgegebener Menge der Nullstellen und Einsstellen. Math. Z. 168(1979), 7785.CrossRefGoogle Scholar
Yang, L., Value distribution theory, Springer, Berlin, Heidelberg, 1993.Google Scholar