Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T06:58:20.477Z Has data issue: false hasContentIssue false

On the Relation between a Cluster set Introduced by Constantinescu and Cornea, and the Fine Cluster set of Cartan, Brelot, and Naïm

Published online by Cambridge University Press:  20 November 2018

H. L. Jackson*
Affiliation:
McMaster University, Hamilton, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The field of boundary limit theorems in analytic function theory is usually considered to have begun about 1906, with the publication of Fatou's thesis [8]. In this remarkable memoir a theorem is proved, that now bears the author's name, which implies that any bounded holomorphic function defined on the unit disk possesses an angular limit almost everywhere (Lebesgue measure) on the frontier. Outstanding classical contributions to this field can be attributed to F. and M. Riesz, R. Nevanlinna, Lusin, Privaloff, Frostman, Plessner, and others.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Brelot, M., Points irréguliers et transformations continues en théorie du potentiel. Jour. Math. Pures et Appl., 19 (1940), 319-337.Google Scholar
2. Brelot, M., Sur les ensembles effilés, Bull. Sc. Math., 68 (1944), 12-36.Google Scholar
3. Brelot, M., Minorantes sousharmoniques, extrémales et capacités, Jour. Matin Pures et Appl.. 24(1945), 1-32.Google Scholar
4. Brelot, M., A new. proof of the fundamental theorem of Kellogg-Evans on the set of irregular points in the Dirichiet problem, Rend, del Circolo Mat, Palermo, Serie 2, 4 (1955), 1-11.Google Scholar
5. Cartan, H., Théorie générale du balayage en potentiel Newtonien, Annales Univ. Grenoble, 22 (1946), 221-280.Google Scholar
6. Constantinescu, C. and Cornea, A., Űber das Verhalten der analytischen Abbildungen Riemannschen Fiächen auf dem idealen Rand von Martin, Nagoya Math. Jour., 17 (1960), 1-87.Google Scholar
7. Doob, J. L., Conformally invariant cluster value theory, 111. Jour. Math., 5, No. 4, (1961), 521-549.Google Scholar
8. Fatou, P., Séries trigonometriques et séries de Taylor, Acta Math., 30 (1906), 334-400.Google Scholar
9. Kuramochi, Z., Relations between harmonie dimensions, Proc. Jap. Acad., 30 (1944), 576-580.Google Scholar
10. Martin, R. S., Minimal positive harmonie functions, Trans. Amer. Math. Soc., 49 (1941), 137-172.Google Scholar
11. Naïm, L., Sur le rôle de la frontière de R. S. Martin dan le théorie du potentiel, Thesis, Paris, 1957.Google Scholar
12. Parreau, M., Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Annales Inst. Fourier Univ. Grenoble, 3(1951), 103-197.Google Scholar