Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T11:41:25.837Z Has data issue: false hasContentIssue false

On the Order of the Error Function of the (k, r)-Integers—II

Published online by Cambridge University Press:  20 November 2018

M. V. Subbarao
Affiliation:
University of Alberta, Andhra University, University of Toledo and University of Georgia
D. Suryanarayana
Affiliation:
University of Alberta, Andhra University, University of Toledo and University of Georgia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the first part of this note we give a very simple and elegant proof of the theorem on the order of the error function of the (k, r)-integers, which the authors proved earlier using elaborate calculations. We also obtain an improvement of an earlier result on the order of the same error function on the basis of the Riemann hypothesis.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Axer, A., Über einige Grenzwertsätze, S.B. Akad. Wiss. Wien (2a), 120 (1911), 1253-1298.Google Scholar
2. Suryanarayana, D. and Sitaramachandra Rao, R., On the order of the error function of the k-free integers, Proc. Amer. Math. Soc. 28 (1971), 53-58.Google Scholar
3. Suryanarayana, D. and Sitaramachandra Rao, R., Uniform 0-estimate for k-free integers, J. Reine Angew. Math. 261 (1973), 146-152.Google Scholar
4. Subbarao, M. V. and Suryanarayana, D., On the order of the error function of the (k, r)-integers, J. Number Theory, 6 (1974), 112-123.Google Scholar
5. Walfisz, A., Weylsche Exponentialsumman in der neueren Zahlentheorie, Mathematische Forschungsberichte, 15, VEB Deutscher Verlag, Berlin, 1963.Google Scholar