Article contents
On the Kobayashi Pseudometric Reduction of Homogeneous Spaces
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Given any homogeneous complex manifold X = G/H, there exists a natural coset map π :G/H → G/K satisfying π (X1) = π (x2) if and only if dx(x1 x2) = 0, where dx denotes the Kobayashi pseudometric on X. Its typical fiber Z : = K/H is a connected complex submanifold of X. Also G/K has a (7-invariant complex structure, provided K satisfies a certain technical assumption (see Theorem 3). If Z is compact as well, then G/K is biholomorphic to a homogeneous bounded domain.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1988
References
1.
Bochner, S. and Montgomery, D., Groups on analytic manifolds, Ann. Math.
48 (1947), pp. 659–669. MR9-174.Google Scholar
2.
Chevalley, C., On the topological structure of solvable groups, Ann. of Math.
42 (1941), pp. 668–675. MR3-36.Google Scholar
3.
Fischer, W. and Grauert, H., Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Gôttingen Math.-Phys. Kl.
II, 1965, pp. 89–94. MR32#1731.Google Scholar
4.
Gilligan, B., On bounded holomorphic reductions of homogeneous spaces, C.R. Math. Rep. Acad. Sci. Canada, Vol. VI (1984), pp. 175–178. MR86a:32062.Google Scholar
5.
Gilligan, B., Equivariant fibrations of homogeneous complex manifolds, “
Proceedings of Third International Conference on Complex Analysis and Applications”, Sofia, Bulgaria, 1986, pp. 249–258.Google Scholar
6.
Grauert, H., Analytische Faserungen iiber holomorph-vollstandigen Raurnen, Math. Ann.
135 (1958), pp. 263–273. MR20#4661.Google Scholar
7.
Huckleberry, A. T. and Oeljeklaus, E., Classification theorems for almost homogeneous spaces, Rev. de l'Institut E. Cartan, Vol. 9 (1984), MR86g: 32050.Google Scholar
8.
Illarionov, M. A., The Kobayashi pseudometric on a fibered space, Moskovskii gosudarstvennyi universitet im. m.u.
Lemonosova. Moscow University Mathematics Bulletin, 35 (1980), pp. 35–36. MR81g:32017.Google Scholar
9.
Kobayashi, S., Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan
19 (1967), pp. 460–480. MR38#736.Google Scholar
10.
Kobayashi, S., Intrinsic distances, measures and geometric function theory, Bull. A.M.S.
82 (1976), pp. 357–416. MR45#3032.Google Scholar
11.
Kobayashi, S., Hyperbolic manifolds and holomorphic mappings, Dekker, New York, 1970. MR43#3503.Google Scholar
12.
Kodama, A., Remarks on homogeneous hyperbolic complex manifolds, Tohoku Math. Journ.
35 (1983), pp. 181–186. MR84h:32043.Google Scholar
13.
Nag, S., Hyperbolic manifolds admitting holomorphic fiberings, Bull. Austral. Math. Soc.
26 (1982), pp. 181–184. MR85c32043.Google Scholar
14.
Nakajima, K., Homogeneous hyperbolic manifolds and Siegel domains, J. Math. Kyoto Univ.
25 (1985), pp. 269–291. MR86m:32041.Google Scholar
15.
Oeljeklaus, K., and Richthofer, W., Homogeneous complex surfaces, Math. Ann.
268 (1984), pp. 273–292. MR86c:32035.Google Scholar
16.
Remmert, R., and van der Ven, A., Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten, Topology
2 (1963), pp. 137–157. MR26#5594.Google Scholar
17.
Royden, H., Remarks on the Kobayashi pseudometric, several complex variables II (Proc. Internat. Conf., Univ. of Maryland, College Park, Md., 1970) LNM 185, Springer-Verlag, Berlin, 1971, pp. 125–137. MR46#3826.Google Scholar
18.
Royden, H., Holomorphic fiber bundles with hyperbolic fiber, Proc. A.M.S.
43 (1974), pp. 311–312. MR49#3229.Google Scholar
19.
Winkelmann, J., Personal communication (and Ph.D. dissertation, Ruhr-Universitat Bochum, 1987).Google Scholar
You have
Access
- 1
- Cited by