No CrossRef data available.
Published online by Cambridge University Press: 06 October 2022
Let
$\mathcal {A}$
be the set of all integers of the form
$\gcd (n, F_n)$
, where n is a positive integer and
$F_n$
denotes the nth Fibonacci number. Leonetti and Sanna proved that
$\mathcal {A}$
has natural density equal to zero, and asked for a more precise upper bound. We prove that