Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:29:38.274Z Has data issue: false hasContentIssue false

On the Continuity of the Eigenvalues of a Sublaplacian

Published online by Cambridge University Press:  20 November 2018

Amine Aribi
Affiliation:
Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, France e-mail: [email protected]
Sorin Dragomir
Affiliation:
Dipartimento di Matematica e Informatica, Universitá degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, Campus Macchia Romana, 85100 Potenza, Italy e-mail: [email protected]
Ahmad El Soufi
Affiliation:
Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, France e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the behavior of the eigenvalues of a sublaplacian ${{\Delta }_{b}}$ on a compact strictly pseudoconvex $\text{CR}$ manifold $M$, as functions on the set ${{\mathcal{P}}_{+}}$ of positively oriented contact forms on $M$ by endowing ${{\mathcal{P}}_{+}}$ with a natural metric topology.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Aribi, A., Dragomir, S., and Soufi, A. El, Sublaplacian eigenvalue functionals and contact structuredeformations on compact CR manifolds. In preparation.Google Scholar
[2] Bando, S. and Urakawa, H., Generic properties of the eigenvalues of the Laplacian for compactRiemannian manifolds. Tohoku Math. J. 35 (1983), 155172. http://dx.doi.org/10.2748/tmj/1178229047 Google Scholar
[3] Barletta, E. and Dragomir, S., Sublaplacians on CR manifolds. Bull. Math. Soc. Sci. Math. Roumanie 52 (2009), 332.Google Scholar
[4] Bony, J. M., Principe du maximum, inégalité de Harnak et unicité du probl`eme de Cauchy pourles opérateurs elliptiques dégénéré. Ann. Inst. Fourier Grenoble 19 (1969), 277304. http://dx.doi.org/10.5802/aif.319 Google Scholar
[5] Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR manifolds. Progr. Math. 246, Birkhäuser, Boston–Basel–Berlin, 2006.Google Scholar
[6] Soufi, A. El and Ilias, S., Laplacian eigenvalue functionals and metric deformations on compactmanifolds. J. Geom. Phys. 58 (2008), 89104. http://dx.doi.org/10.1016/j.geomphys.2007.09.008 Google Scholar
[7] Kriegl, A. and Michor, P., Differentiable perturbation of unbounded operators. Math. Ann. 327 (2003), 191201. http://dx.doi.org/10.1007/s00208-003-0446-5 Google Scholar
[8] Lee, J. M., The Fefferman metric and pseudohermitian invariants. Trans. Amer. Math. Soc. 296 (1986), 411429.Google Scholar
[9] Menikoff, A. and Sjöstrand, J., On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235 (1978), 5585. http://dx.doi.org/10.1007/BF01421593 Google Scholar
[10] Mounoud, P., Some topological properties of the space of Lorentz metrics. Differential Geom. Appl. 15 (2001), 4757. http://dx.doi.org/10.1016/S0926-2245(01)00039-0 Google Scholar
[11] Rudin, W., Functional analysis. Internat. Ser. Pure Appl. Math., McGraw-Hill, Inc., New York–London–Paris, 1991.Google Scholar
[12] Sjöstrand, J., On the eigenvalues of a class of hypoelliptic operators. IV. Ann. Inst. Fourier (Grenoble) 30 (1980), 109169.Google Scholar
[13] Urakawa, H., How do eigenvalues of Laplacian depend upon deformations of Riemannianmetrics? In: Spectra of Riemannian manifolds, Kaigai Publications, Tokyo, 1983, 129137.Google Scholar