Published online by Cambridge University Press: 20 November 2018
Let G be a periodic group and ZG its integral group ring. The elements ±g(g∈G) are called the trivial units of ZG. In [1], S. D. Berman has shown that if G is finite, then every unit of finite order is trivial if and only if G is abelian or the direct product of a quaternion group of order 8 and an elementary abelin 2-group. By comparison, Losey in [7] has shown that if ZG contains one non-trivial unit of finite order, then it contains infinitely many.