Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T04:39:27.210Z Has data issue: false hasContentIssue false

On Some Topological Properties of Fourier Transforms of Regular Holonomic ${\mathcal{D}}$-Modules

Published online by Cambridge University Press:  06 January 2020

Yohei Ito
Affiliation:
Graduate School of Mathematical Science, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, 153-8914, Japan Email: [email protected]
Kiyoshi Takeuchi
Affiliation:
Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571, Japan Email: [email protected]

Abstract

We study Fourier transforms of regular holonomic ${\mathcal{D}}$-modules. In particular, we show that their solution complexes are monodromic. An application to direct images of some irregular holonomic ${\mathcal{D}}$-modules will be given. Moreover, we give a new proof of the classical theorem of Brylinski and improve it by showing its converse.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloch, S. and Esnault, H., Local Fourier transforms and rigidity for D-modules. Asian J. Math. 8(2004), 587605.CrossRefGoogle Scholar
Brylinski, J.-L., Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. Astérisque 140–141(1986), 3134, 251.Google Scholar
D’Agnolo, A., Hien, M., Morando, G., and Sabbah, C., Topological computation of some Stokes phenomena on the affine line. Ann. Inst. Fourier, to appear.Google Scholar
D’Agnolo, A. and Kashiwara, M., Riemann–Hilbert correspondence for holonomic D-modules. Publ. Math. Inst. Hautes Études Sci. 123(2016), 69197. https://doi.org/10.1007/s10240-015-0076-yCrossRefGoogle Scholar
D’Agnolo, A. and Kashiwara, M., A microlocal approach to the enhanced Fourier–Sato transform in dimension one. Adv. Math. 339(2018), 159. https://doi.org/10.1016/j.aim.2018.09.022CrossRefGoogle Scholar
Daia, L., La transformation de Fourier pour les D-modules. Ann. Inst. Fourier 50(2001), no. 6, 18911944.CrossRefGoogle Scholar
Heizinger, H., Stokes structure and direct image of irregular singular D-modules. 2015. arxiv:1506.05959v1Google Scholar
Hien, M. and Roucairol, C., Integral representations for solutions of exponential Gauss–Manin systems. Bull. Soc. Math. France 136(2008), 505532. https://doi.org/10.24033/bsmf.2564CrossRefGoogle Scholar
Hotta, R., Takeuchi, K., and Tanisaki, T., D-modules, perverse sheaves, and representation theory. Progress in Mathematics, 236, Birkhäuser Boston, Boston, MA, 2008. https://doi.org/10.1007/978-0-8176-4523-6CrossRefGoogle Scholar
Ito, Y. and Takeuchi, K., On irregularities of Fourier transforms of regular holonomic D-Modules. 2018. arxiv:1801.07444v17Google Scholar
Kashiwara, M. and Schapira, P., Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, Berlin, 1990. https://doi.org/10.1007/978-3-662-02661-8CrossRefGoogle Scholar
Kashiwara, M. and Schapira, P., Ind-sheaves. Astérisque 271(2001), 1136.Google Scholar
Kashiwara, M. and Schapira, P., Categories and sheaves. Grundlehren der Mathematischen Wissenschaften, 332, Springer-Verlag, Berlin, 2006. https://doi.org/10.1007/3-540-27950-4CrossRefGoogle Scholar
Kashiwara, M. and Schapira, P., Irregular holonomic kernels and Laplace transform. Selecta Math. 22(2016), 55109. https://doi.org/10.1007/s00029-015-0185-yCrossRefGoogle Scholar
Kashiwara, M. and Schapira, P., Regular and irregular holonomic D-modules. London Mathematical Society Lecture Note Series, 433, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316675625CrossRefGoogle Scholar
Katz, N. s M. and Laumon, G., Transformation de Fourier et majoration de sommes exponentielles. Inst. Hautes Études Sci. Publ. Math. 62(1985), 361418.CrossRefGoogle Scholar
Malgrange, B., Transformation de Fourier géometrique. Séminaire Bourbaki, Vol. 1987/88. Astérisque 161–162(1989), no. 692, 4, 133–150.Google Scholar
Mochizuki, T., Note on the Stokes structure of Fourier transform. Acta Math. Vietnam 35(2010), 107158.Google Scholar
Mochizuki, T., Stokes shells and Fourier transforms. 2018. arxiv:1808.01037v1Google Scholar
Prelli, L., Conic sheaves on subanalytic sites and laplace transform. Rend. Semin. Mat. Univ. Padova 125(2011), 173206. https://doi.org/10.4171/RSMUP/125-11CrossRefGoogle Scholar
Roucairol, C., Irregularity of an analogue of the Gauss–Manin systems. Bull. Soc. Math. France 134(2006), 269286. https://doi.org/10.24033/bsmf.2510CrossRefGoogle Scholar
Roucairol, C., Formal structure of direct image of holonomic D-modules of exponential type. Manuscripta Math. 124(2007), 299318. https://doi.org/10.24033/bsmf.2510CrossRefGoogle Scholar
Sabbah, C., Hypergeometric periods for a tame polynomial. Port. Math. 63(2006), 173226.Google Scholar
Sabbah, C., An explicit stationary phase formula for the local formal Fourier–Laplace transform. In: Singularities I, Contemp. Math., 474, Amer. Math. Soc., Providence, RI, 2008, pp. 309330.https://doi.org/10.1090/conm/474/09262CrossRefGoogle Scholar
Tamarkin, D., Microlocal condition for non-displaceability. In: Algebraic and Analytic Microlocal Analysis, AAMA 2013, Springer Proceedings in Mathematics & Statistics, 269, Springer, Cham, 2018, pp. 99223.https://doi.org/10.1007/978-3-030-01588-6_3CrossRefGoogle Scholar
Verdier, J.-L., Spécialisation de faisceaux et monodromie modérée. In: Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, 101–102, Soc. Math. France, Paris, 1983, pp. 332364.Google Scholar