Article contents
On Minimally Thin Sets in a Stolz Domain
Published online by Cambridge University Press: 20 November 2018
Extract
Let D denote the open right half plane and
a Stolz domain in D with vertex at the origin. If h is a minimal harmonic function on D with pole at the origin then E⊂D is minimally thin at the origin iff where is the reduced function of h on E in the sense of Brelot. We now define
where s shall be fixed to be 1/e. For the set E∩In we shall let cn denote the outer ordinary capacity (see [1, pp. 320-321]), An the outer logarithmic capacity, and on the outer Green capacity with respect to D. If E⊂K, Mme. Lelong [3, p. 131] was able to prove that E is minimally thin at the origin Since one cannot easily relate the classical measure theoretic properties of a plane set with its Green capacity, it would appear desirable to find some other criteria for minimal thinness.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1972
References
- 1
- Cited by