Published online by Cambridge University Press: 20 November 2018
It is proven that the dimensions of the homogeneous summands of a nontrivial Z graded module for an infinité dimensional Heisenberg algebra on which a central element acts as nonzero scalar are unbounded. This result is then applied to show that the central elements of an affine Lie algebra act trivially on any indecomposable diagonalizable module whose weight spaces are of bounded dimension.