Article contents
On isomorphisms between weighted
$L^p$-algebras
Published online by Cambridge University Press: 30 October 2020
Abstract
Let G be a locally compact group and let
$\omega $
be a continuous weight on G. In this paper, we first characterize bicontinuous biseparating algebra isomorphisms between weighted
$L^p$
-algebras. As a result, we extend previous results of Edwards, Parrott, and Strichartz on algebra isomorphisms between
$L^p$
-algebras to the setting of weighted
$L^p$
-algebras. We then study the automorphisms of certain weighted
$L^p$
-algebras on integers, applying known results on composition operators to classical function spaces.
Keywords
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2020
Footnotes
Y.K. is supported by the French “Investissements d'Avenir” program, project ISITE-BFC (contract ANR-15-IDEX-03). S.Z. is supported by the mobility program of the region of Bourgogne-Franche-Comté, France.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline7.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline8.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline9.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline10.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline12.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline13.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline14.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline15.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211214172852732-0004:S0008439520000880:S0008439520000880_inline16.png?pub-status=live)
- 2
- Cited by