Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Hudzik, H.
Kamińska, A.
and
Mastyło, M.
2000.
Monotonicity and Rotundity Properties in Banach Lattices.
Rocky Mountain Journal of Mathematics,
Vol. 30,
Issue. 3,
Chen, S.
Cui, Y.
Hudzik, H.
and
Sims, B.
2001.
Handbook of Metric Fixed Point Theory.
p.
339.
Dilworth, S.J.
2001.
Vol. 1,
Issue. ,
p.
497.
Foralewski, Paweł
Hudzik, Henryk
and
Szymaszkiewicz, Lucjan
2008.
Local rotundity structure of generalized Orlicz–Lorentz sequence spaces.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 68,
Issue. 9,
p.
2709.
Foralewski, Paweł
Hudzik, Henryk
and
Szymaszkiewicz, Lucjan
2008.
On some geometric and topological properties of generalized Orlicz–Lorentz sequence spaces.
Mathematische Nachrichten,
Vol. 281,
Issue. 2,
p.
181.
Choi, Yun Sung
Lee, Han Ju
and
Song, Hyun Gwi
2010.
Bishop’s theorem and differentiability of a subspace of C b (K).
Israel Journal of Mathematics,
Vol. 180,
Issue. 1,
p.
93.
Wang, Jincai
and
Ning, Zhe
2011.
Rotundity and uniform rotundity of Orlicz‐Lorentz sequence spaces equipped with the Orlicz norm.
Mathematische Nachrichten,
Vol. 284,
Issue. 17-18,
p.
2297.
Foralewski, Paweł
2011.
Some fundamental geometric and topological properties of generalized Orlicz‐Lorentz function spaces.
Mathematische Nachrichten,
Vol. 284,
Issue. 8-9,
p.
1003.
Foralewski, Paweł
2011.
Rotundity structure of local nature for generalized Orlicz–Lorentz function spaces.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 74,
Issue. 12,
p.
3912.
Foralewski, Paweł
2012.
On some geometric properties of generalized Orlicz–Lorentz function spaces.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 75,
Issue. 17,
p.
6217.
Foralewski, Paweł
2013.
On some geometric properties of generalized Orlicz–Lorentz sequence spaces.
Indagationes Mathematicae,
Vol. 24,
Issue. 2,
p.
346.
Foralewski, Paweł
Hudzik, Henryk
and
Kolwicz, Paweł
2013.
Non-squareness properties of Orlicz–Lorentz sequence spaces.
Journal of Functional Analysis,
Vol. 264,
Issue. 2,
p.
605.
Li, Hongliang
2013.
The Riesz convergence property on weighted Lorentz spaces and Orlicz-Lorentz spaces.
Quaestiones Mathematicae,
Vol. 36,
Issue. 2,
p.
181.
Foralewski, Paweł
Hudzik, Henryk
and
Kolwicz, Paweł
2013.
Non-squareness properties of Orlicz-Lorentz function spaces.
Journal of Inequalities and Applications,
Vol. 2013,
Issue. 1,
Ciesielski, Maciej
2015.
On geometric structure of symmetric spaces.
Journal of Mathematical Analysis and Applications,
Vol. 430,
Issue. 1,
p.
98.
Hudzik, Henryk
Kaczmarek, Radosław
and
Krbec, Miroslav
2016.
In some symmetric spaces monotonicity properties can be reduced to the cone of rearrangements.
Aequationes mathematicae,
Vol. 90,
Issue. 1,
p.
249.
Ciesielski, Maciej
2017.
Hardy–Littlewood–Pólya relation in the best dominated approximation in symmetric spaces.
Journal of Approximation Theory,
Vol. 213,
Issue. ,
p.
78.
Ciesielski, Maciej
and
Lewicki, Grzegorz
2017.
Uniform K-monotonicity and K-order continuity in symmetric spaces with application to approximation theory.
Journal of Mathematical Analysis and Applications,
Vol. 456,
Issue. 2,
p.
705.
Ciesielski, Maciej
2018.
Relationships between K-monotonicity and rotundity properties with application.
Journal of Mathematical Analysis and Applications,
Vol. 465,
Issue. 1,
p.
235.
Cui, Yunan
Foralewski, Paweł
Hudzik, Henryk
and
Kaczmarek, Radosław
2021.
Kadec–Klee properties of Orlicz–Lorentz sequence spaces equipped with the Orlicz norm.
Positivity,
Vol. 25,
Issue. 4,
p.
1273.