Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T21:30:46.697Z Has data issue: false hasContentIssue false

On Geometric Properties of Orlicz-Lorentz Spaces

Published online by Cambridge University Press:  20 November 2018

H. Hudzik
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
A. Kamińska
Affiliation:
Department of Mathematics, The University of Memphis, Memphis, Tennessee 38152, U.S.A.
M. Mastyło
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Criteria for local uniform rotundity and midpoint local uniform rotundity in Orlicz-Lorentz spaces with the Luxemburg norm are given. Strict K-monotonicity and Kadec-Klee property are also discussed.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

1. Bennett, C. and Sharpley, R., Interpolation of operators, Academic Press Inc., New York 1988.Google Scholar
2. Calderón, A. P., Spaces between L1 and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273299.Google Scholar
3. Chillin, V. I., Dodds, P. G., Sedaev, A. A. and Sukochev, F. A., Characterizations of Kadec-Klee properties in symmetric spaces of measurable functions, Trans. Amer. Math. Soc., 348 (1996), 48954918.Google Scholar
4. Davis, W. J., Ghoussoub, N. and Lindenstrauss, J., A lattice renorming theorem and applications to vector-valued processes, Trans. Amer.Math. Soc. 263 (1981), 531540.Google Scholar
5. Dilworth, S. J. and Hsu, Y. P., The uniform Kadec-Klee property for the Lorentz spaces Lw,1, J. Austral. Math. Soc. Ser.A 60 (1996), 717.Google Scholar
6. Fremlin, D. H., Stable subspaces of L1 + L1 , Proc. Cambridge Philos. Soc. 64 (1968), 625643.Google Scholar
7. Hudzik, H., Kamińska, A. and Mastyło, M., Geometric properties of some Calderón-Lozanovskii spaces and Orlicz-Lorentz spaces, Houston J. Math., 22 (1996), 639663.Google Scholar
8. Hudzik, H. and Mastyło, M., Strongly extreme points in Köthe-Bochner spaces, RockyMountain J. Math. (3) 23 (1993), 899909.Google Scholar
9. Hudzik, H. and Mastyło, M., Local uniform rotundity in Banach spaces via sublinear operators, Math. Japon., to appear.Google Scholar
10. Kamińska, A., Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 2938.Google Scholar
11. Krein, S. G., Petunin, Yu. I. and Semenov, E. M., Interpolation of Linear Operators, Moscow, 1978, Russian; English transl., Amer. Math. Soc., Providence, 1982.Google Scholar
12. Lin, P. K. and Sun, H., Some geometrical properties of Orlicz-Lorentz spaces, Arch. Math. 64 (1995), 500511.Google Scholar
13. Medzhitov, A. and Sukochev, P., The property (H) in Orlicz spaces, Bull. Polish. Acad. Sci. Math. 40 (1992), 511.Google Scholar
14. Sedaev, A. A., On the (H)-property in symmetric spaces, Teor. Funktsi Funktsional Anal. i Prilozhen. 11 (1990), 6780.Google Scholar
15. Sedaev, A. A., On weak and norm convergence in interpolation spaces, Trudy 6 Zimney Shkoly Po Mat. Programm. i Smezn. Voprosam., Moscow, (1975), 245267.Google Scholar
16. Szlenk, W., Sur les suites faiblement convergents dans l’espace L, Studia Math. 25 (1970), 6780.Google Scholar