Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:59:14.630Z Has data issue: false hasContentIssue false

On Differentiable Functions having an Everywhere Dense set of Intervals of Constancy

Published online by Cambridge University Press:  20 November 2018

A. M. Bruckner
Affiliation:
University of California Santa Barbara
John L. Leonard
Affiliation:
University of California Santa Barbara
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Cantor function C [2; p. 213], which appears in analysis as a simple example of a continuous increasing function which is not absolutely continuous, has the following properties:

  1. (i) C is defined on [0,1], with C(0) = 0, C (l) = l;

  2. (ii) C is continuous and non-decreasing on [0,1];

  3. (iii) C is constant on each interval contiguous to the perfect Cantor set P;

  4. (iv) C fails to be constant on any open interval containing points of P;

  5. (v) The set of points at which C is non-differentiable is non-denumerable.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Boboc, N. and Marcus, S., Sur la détermination d' une fonction par les valeurs prises sur un certain ensemble, Ann. L' Ecole Norm. Sup. (3),76, (1959), 151-159.Google Scholar
2. Natanson, I. P., Theory of functions of a real variable, Vol. 1, Ungar, New York, 1961.Google Scholar
3. Saks, S., Theory of the integral, Monografje Matematyczne, Vol. 7, Warszawa - Lwów, 1937.Google Scholar
4. Zahorski, Z., Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.Google Scholar
5. Zahorski, Z., Űber die Konstruktion einer differenzierbaren, monotonen, nicht Konstanten Funktion, mit űberall dichter Menge von Konstanzintervallen, Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, classe III, vol 30(1937), 202-206.Google Scholar